HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Utilizing nanobody technology to target non-immunodominant domains of VAR2CSA.

Abstract
Placental malaria is a major health problem for both pregnant women and their fetuses in malaria endemic regions. It is triggered by the accumulation of Plasmodium falciparum-infected erythrocytes (IE) in the intervillous spaces of the placenta and is associated with foetal growth restriction and maternal anemia. IE accumulation is supported by the binding of the parasite-expressed protein VAR2CSA to placental chondroitin sulfate A (CSA). Defining specific CSA-binding epitopes of VAR2CSA, against which to target the immune response, is essential for the development of a vaccine aimed at blocking IE adhesion. However, the development of a VAR2CSA adhesion-blocking vaccine remains challenging due to (i) the large size of VAR2CSA and (ii) the extensive immune selection for polymorphisms and thereby non-neutralizing B-cell epitopes. Camelid heavy-chain-only antibodies (HcAbs) are known to target epitopes that are less immunogenic to classical IgG and, due to their small size and protruding antigen-binding loop, able to reach and recognize cryptic, conformational epitopes which are inaccessible to conventional antibodies. The variable heavy chain (VHH) domain is the antigen-binding site of camelid HcAbs, the so called Nanobody, which represents the smallest known (15 kDa) intact, native antigen-binding fragment. In this study, we have used the Nanobody technology, an approach new to malaria research, to generate small and functional antibody fragments recognizing unique epitopes broadly distributed on VAR2CSA.
AuthorsSisse B Ditlev, Raluca Florea, Morten A Nielsen, Thor G Theander, Stefan Magez, Philippe Boeuf, Ali Salanti
JournalPloS one (PLoS One) Vol. 9 Issue 1 Pg. e84981 ( 2014) ISSN: 1932-6203 [Electronic] United States
PMID24465459 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Antigens, Protozoan
  • Epitopes
  • Immunoglobulin Heavy Chains
  • Peptide Library
  • Recombinant Proteins
  • Single-Domain Antibodies
  • VAR2CSA protein, Plasmodium falciparum
  • Chondroitin Sulfates
Topics
  • Amino Acid Sequence
  • Animals
  • Antigens, Protozoan (chemistry, immunology)
  • Camelids, New World
  • Chondroitin Sulfates (chemistry, metabolism)
  • Epitopes (chemistry, immunology)
  • Erythrocytes (parasitology)
  • Humans
  • Immunoglobulin Heavy Chains (biosynthesis, chemistry, immunology)
  • Malaria, Falciparum (immunology, prevention & control)
  • Molecular Sequence Data
  • Peptide Library
  • Plasmodium falciparum (chemistry, immunology)
  • Protein Binding
  • Recombinant Proteins (biosynthesis, chemistry, immunology)
  • Sequence Alignment
  • Single-Domain Antibodies (biosynthesis, chemistry, immunology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: