HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Glutathione reductase inhibition and methylated arsenic distribution in Cd1 mice brain and liver.

Abstract
Inorganic arsenic exposure via drinking water has been associated with cancer and serious injury in various internal organs, as well as with peripheral neuropathy and diverse effects in the nervous system. Alterations in memory and attention processes have been reported in exposed children, whereas adults acutely exposed to high amounts of inorganic arsenic showed impairments in learning, memory, and concentration. Glutathione (GSH) is extensively involved in the metabolism of inorganic arsenic, and both arsenite and its methylated metabolites have been shown to be potent inhibitors of glutathione reductase (GR) in vitro. Brain would be more susceptible to GR inhibition because of the decreased activities of superoxide dismutase (SOD) and catalase reported in this tissue. To investigate whether GR inhibition could be documented in vivo, we determined the activity and levels of GR in brain as well as in liver, the main organ of arsenic metabolism in mice exposed to 2.5, 5, or 10 mg/kg/day of sodium arsenite over a period of 9 days. In contrast to what has been observed in vitro, significant inhibition of the expression and activity of GR was observed only at the highest concentration used (10 mg/kg/day) in both organs. Although the disposition of arsenicals was higher in liver, significant amounts of inorganic and methylated arsenic forms were determined in the brain of exposed animals. The formation of monomethylarsenic (MMA) and dimethylarsenic (DMA) metabolites in the brain was confirmed by incubating brain slices for 24, 48, and 72 h with sodium arsenite.
AuthorsV M Rodríguez, L M Del Razo, J H Limón-Pacheco, M Giordano, L C Sánchez-Peña, Eileen Uribe-Querol, G Gutiérrez-Ospina, M E Gonsebatt
JournalToxicological sciences : an official journal of the Society of Toxicology (Toxicol Sci) Vol. 84 Issue 1 Pg. 157-66 (Mar 2005) ISSN: 1096-6080 [Print] United States
PMID15601678 (Publication Type: Journal Article)
Chemical References
  • Arsenicals
  • Vitamins
  • Thioredoxins
  • Glutathione Reductase
  • Glutathione
Topics
  • Animals
  • Arsenicals (pharmacokinetics)
  • Blotting, Western
  • Brain (metabolism)
  • Dose-Response Relationship, Drug
  • Glutathione (metabolism)
  • Glutathione Reductase (antagonists & inhibitors)
  • Liver (metabolism)
  • Male
  • Methylation
  • Mice
  • Organ Culture Techniques
  • Oxidation-Reduction
  • Thioredoxins (metabolism)
  • Vitamins (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: