HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effect of torsinA on membrane proteins reveals a loss of function and a dominant-negative phenotype of the dystonia-associated DeltaE-torsinA mutant.

Abstract
Most cases of early-onset torsion dystonia (EOTD) are caused by a deletion of one glutamic acid in the carboxyl terminus of a protein named torsinA. The mutation causes the protein to aggregate in perinuclear inclusions as opposed to the endoplasmic reticulum localization of the wild-type protein. Although there is increasing evidence that dysfunction of the dopamine system is implicated in the development of EOTD, the biological function of torsinA and its relation to dopaminergic neurotransmission has remained unexplored. Here, we show that torsinA can regulate the cellular trafficking of the dopamine transporter, as well as other polytopic membrane-bound proteins, including G protein-coupled receptors, transporters, and ion channels. This effect was prevented by mutating the ATP-binding site in torsinA. The dystonia-associated torsinA deletion mutant (DeltaE-torsinA) did not have any effect on the cell surface distribution of polytopic membrane-associated proteins, suggesting that the mutation linked with EOTD results in a loss of function. However, a mutation in the ATP-binding site in DeltaE-torsinA reversed the aggregate phenotype associated with the mutant. Moreover, the deletion mutant acts as a dominant-negative of wild-type torsinA through a mechanism presumably involving association of wild-type and mutant torsinA. Taken together, our results provide evidence for a functional role for torsinA and a loss of function and a dominant-negative phenotype of the DeltaE-torsinA mutation. These properties may contribute to the autosomal dominant nature of the condition.
AuthorsGonzalo E Torres, Ava L Sweeney, Jean-Martin Beaulieu, Pullani Shashidharan, Marc G Caron
JournalProceedings of the National Academy of Sciences of the United States of America (Proc Natl Acad Sci U S A) Vol. 101 Issue 44 Pg. 15650-5 (Nov 02 2004) ISSN: 0027-8424 [Print] United States
PMID15505207 (Publication Type: Journal Article, Research Support, U.S. Gov't, P.H.S.)
Chemical References
  • Dopamine Plasma Membrane Transport Proteins
  • Macromolecular Substances
  • Membrane Glycoproteins
  • Membrane Proteins
  • Membrane Transport Proteins
  • Molecular Chaperones
  • Nerve Tissue Proteins
  • Recombinant Proteins
  • TOR1A protein, human
  • Adenosine Triphosphate
Topics
  • Adenosine Triphosphate (metabolism)
  • Amino Acid Motifs
  • Cell Line
  • Dopamine Plasma Membrane Transport Proteins
  • Dystonia Musculorum Deformans (etiology, genetics, physiopathology)
  • Genes, Dominant
  • Humans
  • Macromolecular Substances
  • Membrane Glycoproteins (metabolism)
  • Membrane Proteins (drug effects, metabolism)
  • Membrane Transport Proteins (metabolism)
  • Molecular Chaperones (genetics, pharmacology, physiology)
  • Mutagenesis
  • Nerve Tissue Proteins (metabolism)
  • Phenotype
  • Recombinant Proteins (genetics, metabolism, pharmacology)
  • Sequence Deletion
  • Transfection

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: