HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

FRIENDLY is required for efficient dark-induced mitophagy and controlled senescence in Arabidopsis.

Abstract
Mitochondria play essential roles in plant metabolism, supporting both development and stress responses. To maintain a healthy pool of mitochondria, several quality control systems are in place. Selected degradation of mitochondria by autophagy -mitophagy- has been extensively studied in yeast and animals, but information on mitophagy components in plants is limited. The 'Friendly Mitochondria' (FRIENDLY; FMT) protein, homologous to 'clustered mitochondria protein homolog' CLU in animals, was recently suggested to mediate mitophagy of depolarized mitochondria. In this study, we evaluated the role of FMT in carbon starvation- and dark senescence-induced mitophagy in Arabidopsis. Using mitophagy flux assays, we show that loss of FMT results in decreased mitophagy during dark-induced senescence. Mitophagy induced by inhibition of Target of Rapamycin (TOR) signalling is also partially impaired in fmt mutants. The FMT protein is mostly localised in the cytosol, but we show that during darkness FMT is redistributed into speckles, some of which associate with mitochondria. Fmt mutants were initially identified for their abnormal mitochondrial morphology, with mitochondria often forming clusters. We found that dark senescence strongly increases the number and size of mitochondrial clusters in fmt mutants. In agreement with a role for FMT in mitophagy, we show that fmt mutants show accelerated senescence phenotypes comparable to autophagy 11 (atg11) mutants, but less prominent than in atg5 mutants. Furthermore, FMT prevents excessive dark-induced cell death and hydrogen peroxide production, and supports mitophagy and greening in etiolated seedlings. Our findings thus indicate that FMT contributes to mitophagy and provide evidence that mitophagy is required for controlled senescence and prevention of accelerated cell death. We propose that FMT mediates efficient mitophagy by preventing mitochondrial clustering, thereby allowing mitochondria to be captured more effectively by autophagosomes, rather than by acting as a direct mitophagy receptor.
AuthorsSylwia M Kacprzak, Olivier Van Aken
JournalFree radical biology & medicine (Free Radic Biol Med) Vol. 204 Pg. 1-7 (08 01 2023) ISSN: 1873-4596 [Electronic] United States
PMID37085125 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Topics
  • Arabidopsis (genetics)
  • Autophagy
  • Cellular Senescence
  • Mitophagy (genetics)
  • Phenotype
  • Plants
  • Saccharomyces cerevisiae

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: