HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dynamic evolution and mechanism of myocardial glucose metabolism in different functional phenotypes of diabetic cardiomyopathy - a study based on 18 F-FDG microPET myocardial metabolic imaging.

AbstractPURPOSE:
To use 18 F-FDG microPET dynamic imaging to preliminarily identify the changes of myocardial glucose metabolism corresponding to different functional phenotypes of diabetic cardiomyopathy (DCM) in mice and elucidate their relationships.
METHODS:
Left ventricular function was measured by echocardiography in C57BL/KsJ-db/db (db/db) mice and their controls at 8, 12, 16, and 20 weeks of age to divide DCM stages and functional phenotypes. Myocardial histopathology was used to verify the staging accuracy and list-mode microPET dynamic imaging was conducted. The myocardial metabolic rate of glucose (MRglu) and the glucose uptake rate constant (Ki) were derived via Patlak graphical analysis, and the differences in myocardial glucose metabolism levels in different DCM stages were compared. The key proteins involved in myocardial glucose metabolism signaling pathway were analyzed by Western blotting to elucidate the underlying mechanism of abnormal glucose metabolism in DCM.
RESULTS:
Compared with the controls, the ratio of early diastolic transmitral flow velocity to early diastolic mitral annular tissue velocity (E/e') of db/db mice was significantly increased from the age of 12 weeks, while the left ventricular ejection fraction (LVEF) was significantly decreased from the age of 16 weeks (all P < 0.05). Based on the staging criteria, 8 and 12 weeks (8/12w) db/db mice were in DCM stage 1 (diastolic dysfunction with normal LVEF), and 16 and 20 weeks (16/20w) db/db mice were in DCM stage 2/3 (diastolic and systolic dysfunction). The degree of myocardial fibrosis, glycogen deposition and ultrastructural damage in 16/20w db/db mice were more obvious than those in 8/12w group. The myocardial MRglu, Ki of db/db mice in 8/12w group or 16/20w group were significantly lower than those in the control group (all P < 0.05), while the myocardial standard uptake value (SUV) was not significantly reduced in the 8/12w group compared with the control group (P > 0.05). MRglu and SUV were moderately negatively correlated with the E/e' ratio (r=-0.539 and - 0.512, P = 0.007 and 0.011), which were not significantly correlated with LVEF (P > 0.05). Meanwhile, Ki was not significantly correlated with LVEF or E/e' ratio. The decreased expression of glucose transporter (GLUT) -4 in db/db mice preceded GLUT-1 and was accompanied by decreased phosphorylated AMP-activated protein kinase (p-AMPK) expression. Myocardial MRglu, Ki and SUV were significantly positively correlated with the expression of GLUT-4 (MRglu: r = 0.537; Ki: r = 0.818; SUV: r = 0.491; P = 0.000 ~ 0.046), but there was no significant correlation with GLUT-1 expression (P = 0.238 ~ 0.780).
CONCLUSIONS:
During the progression of DCM, with the changes of left ventricular functional phenotype, abnormal and dynamic changes of myocardial glucose metabolism can occur in the early stage.
AuthorsXiaoliang Shao, Yaqi Liu, Mingge Zhou, Min Xu, Yuqi Chen, Hongbo Huang, Jianguo Lin, Yuetao Wang
JournalDiabetology & metabolic syndrome (Diabetol Metab Syndr) Vol. 15 Issue 1 Pg. 64 (Apr 01 2023) ISSN: 1758-5996 [Print] England
PMID37005683 (Publication Type: Journal Article)
Copyright© 2023. The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: