HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Effects of Different Radiation Sources on the Performance of Collagen-Based Corneal Repair Materials and Macrophage Polarization.

Abstract
Owing to the lack of donor corneas, there is an urgent need for suitable corneal substitutes. As the main component of the corneal stroma, collagen has great advantages as a corneal repair material. If there are microorganisms such as bacteria in the corneal repair material, it may induce postoperative infection, causing the failure of corneal transplantation. Therefore, irradiation, as a common sterilization method, is often used to control the microorganisms in the material. However, it has not been reported which type of radiation source and what doses can sterilize more effectively without affecting the properties of collagen-based corneal repair materials (CCRMs) and have a positive impact on macrophage polarization. In this study, three different radiation sources of ultraviolet, cobalt-60, and electron beam at four different doses of 2, 5, 8, and 10 kGy were used to irradiate CCRMs. The swelling, stretching, transmittance, and degradation of the irradiated CCRMs were characterized, and the proliferation of human corneal epithelial cells on the irradiated CCRMs was characterized using the CCK8 kit. The results showed that low dose (<5 kGy) of radiation had little effect on the performance of CCRMs. Three irradiation methods with less influence were selected for the further study on RAW264.7 macrophage polarization. The results indicated that CCRMs treated with UV could downregulate the expression of pro-inflammatory related genes and upregulate the expression of anti-inflammatory genes in macrophages, which indicated that UV irradiation is a beneficial process for the preparation of CCRMs.
AuthorsYi Chen, Xiaomin Sun, Yuehai Peng, James Valenti Eichenbaum, Li Ren, Yanchun Liu
JournalACS omega (ACS Omega) Vol. 7 Issue 26 Pg. 22559-22566 (Jul 05 2022) ISSN: 2470-1343 [Electronic] United States
PMID35811904 (Publication Type: Journal Article)
Copyright© 2022 The Authors. Published by American Chemical Society.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: