HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Poricoic Acid A Inhibits the NF-κB/MAPK Pathway to Alleviate Renal Fibrosis in Rats with Cardiorenal Syndrome.

AbstractObjective:
To explore the potential and mechanism of action of poricoic acid A (PAA) in treatment of cardiorenal injury and fibrosis due to cardiorenal syndrome (CRS).
Materials and Methods:
A CRS rat model was established by transabdominal subtotal nephrectomy (STNx). The experimental group was treated by gavage of PAA (10 mg/kg/day). After 8 weeks of treatment, echocardiography was utilized for detecting heart-related indexes in rats. HE and Masson staining were conducted to detect the degree of pathological damage and fibrosis in rat kidney tissue, respectively. In addition, serum blood urea nitrogen (BUN), serum creatinine (SCr), and 24-hour urine protein were measured biochemically. Also, the levels of inflammatory factors (IL-1β, IL-6, and IL-10) in rat kidneys were measured using ELISA. Western blot was used to examine the expression of NF-κB/MAPK pathway-related proteins.
Results:
In this study, a CRS rat model was successfully established by STNx surgery. PAA treatment could significantly alleviate the damage of heart and kidney function in CRS rats and reduce the pathological damage of kidney tissue and renal fibrosis. Meanwhile, PAA could also inhibit the renal inflammatory response through downregulating IL-1β and IL-6 levels in the kidney tissue and upregulating IL-10 level. Further mechanism exploration showed that the NF-κB/MAPK signaling pathway was significantly activated in CRS rats, while PAA treatment could markedly inhibit the NF-κB/MAPK signaling pathway activity in CRS rats.
Conclusion:
PAA can obviously improve the pathological damage and fibrosis of renal tissue in CRS rats and maintain the function of the heart and kidney. The above functions of PAA may be achieved by inhibiting the NF-κB/MAPK signaling pathway activity. Briefly speaking, PAA can serve as a potential drug for CRS treatment.
AuthorsWenzhong Chen, Zhiwen Fan, Canhui Huang, Junying Liu
JournalEvidence-based complementary and alternative medicine : eCAM (Evid Based Complement Alternat Med) Vol. 2022 Pg. 8644353 ( 2022) ISSN: 1741-427X [Print] United States
PMID35754696 (Publication Type: Journal Article, Retracted Publication)
CopyrightCopyright © 2022 Wenzhong Chen et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: