HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Plasma levels of S100B and neurofilament light chain protein in stress-related mental disorders.

Abstract
The pathophysiological changes underlying stress-related mental disorders remain unclear. However, research suggests that alterations in astrocytes and neurons may be involved. This study examined potential peripheral markers of such alterations, including S100B and neurofilament light chain (NF-L). We compared plasma levels of S100B and NF-L in patients with chronic stress-induced exhaustion disorder (SED), patients with major depressive disorder (MDD), and healthy controls. We also investigated whether levels of S100B and NF-L correlated with levels of astrocyte-derived extracellular vesicles (EVs that indicate astrocyte activation or apoptosis) and with symptom severity. Only women had measurable levels of S100B. Women with SED had higher plasma levels of S100B than women with MDD (P < 0.001) and healthy controls (P < 0.001). Self-rated symptoms of cognitive failures were positively correlated with levels of S100B (rs = 0.434, P = 0.005) as were depressive symptoms (rs = 0.319, P < 0.001). Plasma levels of astrocyte-derived EVs were correlated with levels of S100B (rs = 0.464, P < 0.001). Plasma levels of NF-L did not differ between the groups and were not correlated with symptom severity or EV levels. Thus, long-term stress without sufficient recovery and SED may be associated with raised plasma levels of S100B, which may be evidence of pathophysiological changes in astrocytes. The findings also support the hypothesis that plasma levels of S100B are associated with cognitive dysfunction.
AuthorsJohanna Wallensten, Fariborz Mobarrez, Marie Åsberg, Kristian Borg, Aniella Beser, Alexander Wilczek, Anna Nager
JournalScientific reports (Sci Rep) Vol. 12 Issue 1 Pg. 8339 (05 18 2022) ISSN: 2045-2322 [Electronic] England
PMID35585111 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2022. The Author(s).
Chemical References
  • S100 Calcium Binding Protein beta Subunit
  • S100B protein, human
Topics
  • Astrocytes (metabolism)
  • Case-Control Studies
  • Depressive Disorder, Major (blood, metabolism)
  • Female
  • Humans
  • Intermediate Filaments (metabolism, pathology)
  • Neurons (metabolism, pathology)
  • S100 Calcium Binding Protein beta Subunit (blood, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: