HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Dendritic Cell Targeting Peptide-Based Nanovaccines for Enhanced Cancer Immunotherapy.

Abstract
Immunotherapy emerges as an effective avenue for tumor elimination and has many advantages compared with traditional surgery, radiotherapy, and chemotherapy. Tumor vaccines play an important role in cancer immunotherapy, while the application of tumor vaccines in clinical usage is limited because only limited response can be induced by primary tumor antigens. Accordingly, it is a key point to activate T-cell response with some novel tumor vaccines. Here, we applied phage display biopanning and screened a peptide (TY) that could combine with bone-marrow-derived-dendritic-cells (BMDCs) specifically and spleenic DCs. Then we developed mesoporous silica nanoparticles (MSN-TY/OVA/CpG), with peptide TY and OVA/CpG to target and activate DCs, respectively. Our results showed that the nanoparticles (NPs) could be specifically absorbed by DC in vitro, which enhanced the maturation and activation of DCs in vitro and in vivo. The in vitro study demonstrated the efficiency of nanoparticles in antigen uptake by BMDCs and in the activation of antigen-specific cytotoxic CD8+ T cells. Moreover, MSN-TY/OVA/CpG could activate antigen-specific CD8+ T cells and elicited the cytotoxic T lymphocyte (CTL) priming in naive C57BL/6J mice. Therapeutic application of MSN-TY/OVA/CpG enhanced the activation of DCs and the introducing of CD8+ T cell-mediated immune response to promote tumor elimination, prolong survival of tumor-bearing mice, and cause less systemic toxicity. All these results showed that the targeted nanovaccines could deliver antigen into DCs and activate cancer immunotherapy.
AuthorsYating Liu, Lintong Yao, Wenpeng Cao, Yajing Liu, Wenjie Zhai, Yahong Wu, Binglin Wang, Shanshan Gou, Yaping Qin, Yuanming Qi, Zhenzhen Chen, Yanfeng Gao
JournalACS applied bio materials (ACS Appl Bio Mater) Vol. 2 Issue 3 Pg. 1241-1254 (Mar 18 2019) ISSN: 2576-6422 [Electronic] United States
PMID35021373 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: