HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Retinol-Binding Protein 4 Promotes Cardiac Injury After Myocardial Infarction Via Inducing Cardiomyocyte Pyroptosis Through an Interaction With NLRP3.

Abstract
Background Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular morbidity and mortality worldwide. Pyroptosis is a form of inflammatory cell death that plays a major role in the development and progression of cardiac injury in AMI. However, the underlying mechanisms for the activation of pyroptosis during AMI are not fully elucidated. Methods and Results Here we show that RBP4 (retinol-binding protein 4), a previous identified proinflammatory adipokine, was increased both in the myocardium of left anterior descending artery ligation-induced AMI mouse model and in ischemia-hypoxia‒induced cardiomyocyte injury model. The upregulated RBP4 may contribute to the activation of cardiomyocyte pyroptosis in AMI because overexpression of RBP4 activated NLRP3 (nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3) inflammasome, promoted the precursor cleavage of Caspase-1, and subsequently induced GSDMD (gasdermin-D)-dependent pyroptosis. In contrast, knockdown of RBP4 alleviated ischemia-hypoxia‒induced activation of NLRP3 inflammasome signaling and pyroptosis in cardiomyocytes. Mechanistically, coimmunoprecipitation assay showed that RBP4 interacted directly with NLRP3 in cardiomyocyte, while genetic knockdown or pharmacological inhibition of NLRP3 attenuated RBP4-induced pyroptosis in cardiomyocytes. Finally, knockdown of RBP4 in heart decreased infarct size and protected against AMI-induced pyroptosis and cardiac dysfunction in mice. Conclusions Taken together, these findings reveal RBP4 as a novel modulator promoting cardiomyocyte pyroptosis via interaction with NLRP3 in AMI. Therefore, targeting cardiac RBP4 might represent a viable strategy for the prevention of cardiac injury in patients with AMI.
AuthorsKang-Zhen Zhang, Xi-Yu Shen, Man Wang, Li Wang, Hui-Xian Sun, Xiu-Zhen Li, Jing-Jing Huang, Xiao-Qing Li, Cheng Wu, Can Zhao, Jia-Li Liu, Xiang Lu, Wei Gao
JournalJournal of the American Heart Association (J Am Heart Assoc) Vol. 10 Issue 22 Pg. e022011 (11 16 2021) ISSN: 2047-9980 [Electronic] England
PMID34726071 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Inflammasomes
  • NLR Family, Pyrin Domain-Containing 3 Protein
  • Nlrp3 protein, mouse
  • RBP4 protein, human
  • Retinol-Binding Proteins
  • Retinol-Binding Proteins, Plasma
Topics
  • Animals
  • Heart Injuries
  • Hypoxia
  • Inflammasomes (metabolism)
  • Mice
  • Myocardial Infarction (genetics)
  • Myocytes, Cardiac (metabolism)
  • NLR Family, Pyrin Domain-Containing 3 Protein (genetics, metabolism)
  • Pyroptosis
  • Retinol-Binding Proteins
  • Retinol-Binding Proteins, Plasma

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: