HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

lnc-NLC1-C inhibits migration, invasion and autophagy of glioma cells by targeting miR-383 and regulating PRDX-3 expression.

Abstract
Long non-coding RNAs (lncRNAs) serve an important role in tumor progression, and their abnormal expression is associated with tumor development. The lncRNA narcolepsy candidate region 1 gene C (lnc-NLC1-C) is involved in numerous types of cancer, but its biological function in glioma remains unknown. In the present study, lnc-NLC1-C expression was detected using reverse transcription-quantitative (RT-q)PCR in U251, SHG44, U87MG and U118MG glioma cells. U87MG cells were transfected with lnc-NLC1-C overexpression or interference vectors. Cell proliferation was detected using a Cell Counting Kit-8 assay. Cell migration and invasion were examined using a Transwell assay, while apoptosis, cell cycle and reactive oxygen species production were evaluated using flow cytometry, and the expression levels of lnc-NLC1-C, microRNA (miR)-383 and peroxiredoxin 3 (PRDX-3) were measured using western blotting and RT-qPCR. Rescue experiments were performed to verify the function of the lnc-NLC1-C/miR-383/PRDX-3 axis. The highest expression levels of lnc-NLC1-C were identified in U87MG glioma cells. Overexpression of lnc-NLC1-C expression promoted cell proliferation, G1 phase blocking, migration and invasion, while inhibiting apoptosis and autophagy in U87MG cells. Mechanistically, miR-383 could bind to lnc-NLC1-C to regulate PRDX-3 expression and improve its oncogenic effect. Rescue experiments confirmed that the lnc-NLC1-C/miR-383/PRDX-3 axis was involved in the molecular mechanism of glioma progression. Therefore, lnc-NLC1-C may be a tumor promoter that affects multiple biological functions, such as migration, invasion and autophagy, in glioma cells.
AuthorsZhou Xu, Qianxue Chen, Xingnuo Zeng, Mingchang Li, Jianming Liao
JournalOncology letters (Oncol Lett) Vol. 22 Issue 3 Pg. 640 (Sep 2021) ISSN: 1792-1082 [Electronic] Greece
PMID34386062 (Publication Type: Journal Article)
CopyrightCopyright © 2021, Spandidos Publications.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: