HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The Small-Molecule Inhibitor MRIA9 Reveals Novel Insights into the Cell Cycle Roles of SIK2 in Ovarian Cancer Cells.

Abstract
The activity of the Salt inducible kinase 2 (SIK2), a member of the AMP-activated protein kinase (AMPK)-related kinase family, has been linked to several biological processes that maintain cellular and energetic homeostasis. SIK2 is overexpressed in several cancers, including ovarian cancer, where it promotes the proliferation of metastases. Furthermore, as a centrosome kinase, SIK2 has been shown to regulate the G2/M transition, and its depletion sensitizes ovarian cancer to paclitaxel-based chemotherapy. Here, we report the consequences of SIK2 inhibition on mitosis and synergies with paclitaxel in ovarian cancer using a novel and selective inhibitor, MRIA9. We show that MRIA9-induced inhibition of SIK2 blocks the centrosome disjunction, impairs the centrosome alignment, and causes spindle mispositioning during mitosis. Furthermore, the inhibition of SIK2 using MRIA9 increases chromosomal instability, revealing the role of SIK2 in maintaining genomic stability. Finally, MRIA9 treatment enhances the sensitivity to paclitaxel in 3D-spheroids derived from ovarian cancer cell lines and ovarian cancer patients. Our study suggests selective targeting of SIK2 in ovarian cancer as a therapeutic strategy for overcoming paclitaxel resistance.
AuthorsMonika Raab, Marcel Rak, Roberta Tesch, Khayal Gasimli, Sven Becker, Stefan Knapp, Klaus Strebhardt, Mourad Sanhaji
JournalCancers (Cancers (Basel)) Vol. 13 Issue 15 (Jul 21 2021) ISSN: 2072-6694 [Print] Switzerland
PMID34359562 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: