HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Self-assembled supramolecular nanomicelles from a bile acid-docetaxel conjugate are highly tolerable with improved therapeutic efficacy.

Abstract
Herein, we present the engineering of a supramolecular nanomicellar system that is composed of self-assembled units of the PEGylated lithocholic acid (LCA)-docetaxel (DTX) conjugate (LCA-DTX-PEG). We tethered a short polyethylene glycol unit to LCA and used an esterase-sensitive ester linkage between DTX and LCA. The LCA-DTX-PEG conjugate formed nanomicelles (LCA-DTX-PEG NMs) with ∼160 nm hydrodynamic diameter that are sensitive to cellular esterases and maximized the release of DTX under high esterase exposure. LCA-DTX-PEG NMs were found to be effective as the parent drug in breast cancer cells by stabilizing tubulin and arresting the cells in the G2/M phase. We determined the maximum tolerated dose (MTD) and systemic and vital organ toxicity of LCA-DTX-PEG NMs in mice, rats, and rabbits. LCA-DTX-PEG NMs showed a MTD of >160 mg kg-1 and are found to be safe in comparison with their parent FDA-approved drug formulation (Taxotere® or DTX-TS) that is highly toxic. LCA-DTX-PEG NMs effectively reduced the tumor volume and increased the survival of 4T1 tumor-bearing mice with improved blood circulation time of the drug and its higher accumulation in tumor tissues. Therefore, this study highlights the potential of PEGylated bile acid-drug conjugate based nanomicelles for the development of next generation cancer therapeutics.
AuthorsVedagopuram Sreekanth, Sanjay Pal, Sandeep Kumar, Varsha Komalla, Poonam Yadav, Radhey Shyam, Sagar Sengupta, Avinash Bajaj
JournalBiomaterials science (Biomater Sci) Vol. 9 Issue 16 Pg. 5626-5639 (Aug 21 2021) ISSN: 2047-4849 [Electronic] England
PMID34254078 (Publication Type: Journal Article)
Chemical References
  • Antineoplastic Agents
  • Bile Acids and Salts
  • Drug Carriers
  • Micelles
  • Docetaxel
Topics
  • Animals
  • Antineoplastic Agents (therapeutic use)
  • Bile Acids and Salts
  • Cell Line, Tumor
  • Docetaxel
  • Drug Carriers
  • Mice
  • Micelles
  • Rabbits
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: