HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to ion homeostasis.

Abstract
When plants are exposed to hypoxic conditions, the level of γ-aminobutyric acid (GABA) in plant tissues increases by several orders of magnitude. The physiological rationale behind this elevation remains largely unanswered. By combining genetic and electrophysiological approach, in this work we show that hypoxia-induced increase in GABA content is essential for restoration of membrane potential and preventing ROS-induced disturbance to cytosolic K+ homeostasis and Ca2+ signaling. We show that reduced O2 availability affects H+-ATPase pumping activity, leading to membrane depolarization and K+ loss via outward-rectifying GORK channels. Hypoxia stress also results in H2O2 accumulation in the cell that activates ROS-inducible Ca2+ uptake channels and triggers self-amplifying "ROS-Ca hub," further exacerbating K+ loss via non-selective cation channels that results in the loss of the cell's viability. Hypoxia-induced elevation in the GABA level may restore membrane potential by pH-dependent regulation of H+-ATPase and/or by generating more energy through the activation of the GABA shunt pathway and TCA cycle. Elevated GABA can also provide better control of the ROS-Ca2+ hub by transcriptional control of RBOH genes thus preventing over-excessive H2O2 accumulation. Finally, GABA can operate as a ligand directly controlling the open probability and conductance of K+ efflux GORK channels, thus enabling plants adaptation to hypoxic conditions.
AuthorsQi Wu, Nana Su, Xin Huang, Jin Cui, Lana Shabala, Meixue Zhou, Min Yu, Sergey Shabala
JournalPlant communications (Plant Commun) Vol. 2 Issue 3 Pg. 100188 (05 10 2021) ISSN: 2590-3462 [Electronic] China
PMID34027398 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright© 2021 The Author(s).
Chemical References
  • Ions
  • Reactive Oxygen Species
  • gamma-Aminobutyric Acid
  • Oxygen
Topics
  • Anaerobiosis
  • Arabidopsis (physiology)
  • Homeostasis
  • Ions (metabolism)
  • Membrane Potentials
  • Oxygen (physiology)
  • Reactive Oxygen Species (metabolism)
  • gamma-Aminobutyric Acid (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: