HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ecdysteroid Derivatives that Reverse P-Glycoprotein-Mediated Drug Resistance.

Abstract
The expression of multidrug resistance P-glycoprotein (P-gp) by cancer cells represents one of the major drawbacks to successful cancer therapy. Accordingly, the development of drugs that inhibit the activity of this transporter remains a major challenge in cancer drug discovery. In this context, several new ecdysteroid derivatives have been synthesized and evaluated as P-gp inhibitors. Two of them (compounds 9 and 14) were able to resensitize CEMVbl100 and LoVoDoxo resistant cell lines to vinblastine and doxorubicin, respectively. Indeed, both compounds 9 and 14 increased the cellular accumulation of rhodamine 123 in cells expressing P-gp and stimulated basal P-glycoprotein-ATPase activity at a 1 μM concentration, demonstrating their interference with the transport of other substrates in a competitive mode. Moreover, in a medulloblastoma cell line (DAOY), compounds 9 and 14 reduced the side population representing cancer stem cells, which are characterized by a high expression of ABC drug transporters. Further, in DAOY cells, the same two compounds synergized with cisplatin and vincristine, two drugs used commonly in the therapy of medulloblastoma. Molecular docking studies on the homology-modeled structure of the human P-glycoprotein provided a rationale for the biological results, validating the binding mode within the receptor site, in accordance with lipophilicity data and observed structure-activity relationship information. Altogether, the present results endorse these derivatives as promising P-gp inhibitors, and they may serve as candidates to reverse drug resistance in cancer cells.
AuthorsRoberta Bortolozzi, Andrea Luraghi, Elena Mattiuzzo, Alessandro Sacchetti, Alessandra Silvani, Giampietro Viola
JournalJournal of natural products (J Nat Prod) Vol. 83 Issue 8 Pg. 2434-2446 (08 28 2020) ISSN: 1520-6025 [Electronic] United States
PMID32790992 (Publication Type: Journal Article)
Chemical References
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP-Binding Cassette Transporters
  • Antineoplastic Agents
  • Ecdysteroids
  • Rhodamine 123
Topics
  • ATP Binding Cassette Transporter, Subfamily B (physiology)
  • ATP-Binding Cassette Transporters (metabolism)
  • Antineoplastic Agents (pharmacology)
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm (drug effects, physiology)
  • Ecdysteroids (chemistry, pharmacology)
  • Humans
  • Rhodamine 123 (metabolism)
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: