HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A CEP Peptide Receptor-like Kinase Regulates Auxin Biosynthesis and Ethylene Signaling to Coordinate Root Growth and Symbiotic Nodulation in Medicago truncatula.

Abstract
Because of the high energy consumed during symbiotic nitrogen fixation, legumes must balance growth and symbiotic nodulation. Both lateral roots and nodules form on the root system and the developmental coordination of these organs according to reduced nitrogen (N) availability remains elusive. We show that the Compact Root Architecture 2 (MtCRA2) receptor-like kinase is essential to promote the initiation of early symbiotic nodulation and to inhibit root growth in response to low-N. MtCEP1 peptides can activate MtCRA2 under N-starvation conditions, leading to a repression of MtYUC2 auxin biosynthesis gene expression, and therefore of auxin root responses. Accordingly, the compact root architecture phenotype of cra2 can be mimicked by an auxin treatment or by over-expressing MtYUC2, and conversely, a treatment with YUC inhibitors or a MtYUC2 knock-out rescues the cra2 root phenotype. The MtCEP1-activated CRA2 can additionally interact with and phosphorylate the MtEIN2 ethylene signaling component at Ser643 and Ser924, preventing its cleavage and therefore repressing ethylene responses, thus locally promoting the root susceptibility to rhizobia. In agreement, the cra2 low nodulation phenotype is rescued by an ein2 mutation. Overall, by reducing auxin biosynthesis and inhibiting ethylene signaling, the MtCEP1/MtCRA2 pathway balances root and nodule development under low-N conditions.
AuthorsFugui Zhu, Jie Deng, Hong Chen, Peng Liu, Lihua Zheng, Qinyi Ye, Rui Li, Mathias Brault, Jiangqi Wen, Florian Frugier, Jiangli Dong, Tao Wang
JournalThe Plant cell (Plant Cell) (Jun 25 2020) ISSN: 1532-298X [Electronic] England
PMID32586912 (Publication Type: Journal Article)
Copyright© 2020 American Society of Plant Biologists. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: