HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth.

Abstract
The paracaspase MALT1 plays an essential role in activated B cell-like diffuse large B cell lymphoma (ABC DLBCL) downstream of B cell and TLR pathway genes mutated in these tumors. Although MALT1 is considered a compelling therapeutic target, the development of tractable and specific MALT1 protease inhibitors has thus far been elusive. Here, we developed a target engagement assay that provides a quantitative readout for specific MALT1-inhibitory effects in living cells. This enabled a structure-guided medicinal chemistry effort culminating in the discovery of pharmacologically tractable, irreversible substrate-mimetic compounds that bind the MALT1 active site. We confirmed that MALT1 targeting with compound 3 is effective at suppressing ABC DLBCL cells in vitro and in vivo. We show that a reduction in serum IL-10 levels exquisitely correlates with the drug pharmacokinetics and degree of MALT1 inhibition in vitro and in vivo and could constitute a useful pharmacodynamic biomarker to evaluate these compounds in clinical trials. Compound 3 revealed insights into the biology of MALT1 in ABC DLBCL, such as the role of MALT1 in driving JAK/STAT signaling and suppressing the type I IFN response and MHC class II expression, suggesting that MALT1 inhibition could prime lymphomas for immune recognition by cytotoxic immune cells.
AuthorsLorena Fontán, Qi Qiao, John M Hatcher, Gabriella Casalena, Ilkay Us, Matt Teater, Matt Durant, Guangyan Du, Min Xia, Natalia Bilchuk, Spandan Chennamadhavuni, Giuseppe Palladino, Giorgio Inghirami, Ulrike Philippar, Hao Wu, David A Scott, Nathanael S Gray, Ari Melnick
JournalThe Journal of clinical investigation (J Clin Invest) Vol. 128 Issue 10 Pg. 4397-4412 (10 01 2018) ISSN: 1558-8238 [Electronic] United States
PMID30024860 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Caspase Inhibitors
  • Neoplasm Proteins
  • MALT1 protein, human
  • Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein
Topics
  • Animals
  • Caspase Inhibitors (chemistry, pharmacology)
  • Catalytic Domain
  • Cell Line, Tumor
  • Drug Delivery Systems
  • Female
  • Humans
  • Lymphoma, Large B-Cell, Diffuse (drug therapy, enzymology, genetics, pathology)
  • Male
  • Mice
  • Mice, Inbred NOD
  • Mucosa-Associated Lymphoid Tissue Lymphoma Translocation 1 Protein (antagonists & inhibitors, chemistry, genetics, metabolism)
  • Neoplasm Proteins (antagonists & inhibitors, chemistry, genetics, metabolism)
  • Signal Transduction (drug effects, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: