HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Gut microbial metabolite short-chain fatty acids and obesity.

Abstract
Over the past decade, the gut microbiota has emerged as an essential mediator in the pathophysiology of obesity and related metabolic disorders. In this context, the reciprocal interactions of the gut microbiota structure and their metabolite profiles with host metabolism predisposing to a range of pathological conditions (e.g., insulin resistance) related to energy homeostasis have been increasingly discussed in various animal models and human cohorts. Remarkably, as the role of gut microbial metabolites as critical signaling molecules that function through the complementary host receptors has come to be appreciated, tremendous attention has been focused on the proposed diet-gut microbiota-host homeostasis axis, entailing extensive cross-disciplinary efforts in medical, pharmaceutical, and agricultural sciences. This review will discuss the recent advances in understanding the mechanisms whereby the gut microbiota modulates the effects of diet and shapes the host metabolism either towards or away from obesity and related metabolic conditions. In particular, the interactions of short chain fatty acids (SCFAs), a subset of key gut microbial metabolites, with their specific receptors will be reviewed in relation to host energy homeostatic regulation and evaluated for potential as novel therapeutic targets for diet-induced obesity.
AuthorsXuan Li, Yuuki Shimizu, Ikuo Kimura
JournalBioscience of microbiota, food and health (Biosci Microbiota Food Health) Vol. 36 Issue 4 Pg. 135-140 ( 2017) ISSN: 2186-6953 [Print] Japan
PMID29038768 (Publication Type: Journal Article, Review)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: