HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Gating modifier toxin interactions with ion channels and lipid bilayers: Is the trimolecular complex real?

Abstract
Spider peptide toxins have attracted attention because of their ability to target voltage-gated ion channels, which are involved in several pathologies including chronic pain and some cardiovascular conditions. A class of these peptides acts by modulating the gating mechanism of voltage-gated ion channels and are thus called gating modifier toxins (GMTs). In addition to their interactions with voltage-gated ion channels, some GMTs have affinity for lipid bilayers. This review discusses the potential importance of the cell membrane on the mode of action of GMTs. We propose that peptide-membrane interactions can anchor GMTs at the cell surface, thereby increasing GMT concentration in the vicinity of the channel binding site. We also propose that modulating peptide-membrane interactions might be useful for increasing the therapeutic potential of spider toxins. Furthermore, we explore the advantages and limitations of the methodologies currently used to examine peptide-membrane interactions. Although GMT-lipid membrane binding does not appear to be a requirement for the activity of all GMTs, it is an important feature, and future studies with GMTs should consider the trimolecular peptide-lipid membrane-channel complex. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
AuthorsAkello J Agwa, Sónia T Henriques, Christina I Schroeder
JournalNeuropharmacology (Neuropharmacology) Vol. 127 Pg. 32-45 (Dec 2017) ISSN: 1873-7064 [Electronic] England
PMID28400258 (Publication Type: Journal Article, Review)
CopyrightCopyright © 2017 Elsevier Ltd. All rights reserved.
Chemical References
  • Lipid Bilayers
  • Peptides
  • Spider Venoms
Topics
  • Animals
  • Binding Sites (drug effects)
  • Cell Membrane (drug effects)
  • Ion Channel Gating (drug effects)
  • Lipid Bilayers (metabolism)
  • Peptides (pharmacology)
  • Spider Venoms (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: