HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The inactivation of JAK2/STAT3 signaling and desensitization of M1 mAChR in minimal hepatic encephalopathy (MHE) and the protection of naringin against MHE.

AbstractBACKGROUND:
We previously reported that elevation of intracranial dopamine (DA) levels from cirrhotic livers is implicated in the pathogenesis of minimal hepatic encephalopathy (MHE). Intracellular events in neurons, which lead to memory loss in MHE by elevated DA, however, remain elusive.
METHODS:
In our present study, an MHE rat model, a DA - intracerebroventricularly (i.c.v.) injected rat model and DA-treated primary cortical neurons (PCNs) were used to study this issue using behavioral tests, double-labeled fluorescent staining, immunoblotting, and semi-quantitative RT-PCR.
RESULTS:
Cognitive impairment was observed in MHE rats and DA (10 µg, i.c.v.)-treated rats. The levels of DA in the cerebral cortex of both MHE and DA (10 µg)-treated rats were increased. DA conversely modulated the p-JAK2/p-STAT3 levels in PCNs. In accordance, DA downregulated an anacetylcholine-producing enzyme, choline acetyltransferase (ChAT), and desensitized the M1-type muscarinic acetylcholine receptor (M1 mAChR). Furthermore, naringin completely restored cognitive function in MHE/DA (10 µg)-treated models by activating the JAK2/STAT3 axis, paralleling the upregulation of ChAT and sensitization of M1 mAChR.
CONCLUSIONS:
We propose a hypothesis accounting for memory impairment related to MHE: DA-dependent inactivation of the JAK2/STAT3 axis causes memory loss through cholinergic dysfunction. Our findings provide not only a novel pathological hallmark in MHE but also a novel target in MHE therapy.
AuthorsSaidan Ding, Jiangnan Hu, Jianjing Yang, Leping Liu, Weilong Huang, Xialong Gu, Yiru Ye, Lijie Huang, Yong Liang, Bicheng Chen, Qichuan Zhuge
JournalCellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (Cell Physiol Biochem) Vol. 34 Issue 6 Pg. 1933-50 ( 2014) ISSN: 1421-9778 [Electronic] Germany
PMID25500624 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Flavanones
  • STAT3 Transcription Factor
  • Stat3 protein, rat
  • Jak2 protein, rat
  • Janus Kinase 2
  • naringin
  • Dopamine
Topics
  • Animals
  • Disease Models, Animal
  • Dopamine (metabolism)
  • Flavanones (administration & dosage)
  • Hepatic Encephalopathy (drug therapy, metabolism, pathology)
  • Humans
  • Janus Kinase 2 (biosynthesis, genetics)
  • Memory Disorders (drug therapy, genetics, pathology)
  • Neurons (drug effects, pathology)
  • Rats
  • STAT3 Transcription Factor (biosynthesis, genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: