HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Metabolism and excretion of canagliflozin in mice, rats, dogs, and humans.

Abstract
Canagliflozin is an oral antihyperglycemic agent used for the treatment of type 2 diabetes mellitus. It blocks the reabsorption of glucose in the proximal renal tubule by inhibiting the sodium-glucose cotransporter 2. This article describes the in vivo biotransformation and disposition of canagliflozin after a single oral dose of [(14)C]canagliflozin to intact and bile duct-cannulated (BDC) mice and rats and to intact dogs and humans. Fecal excretion was the primary route of elimination of drug-derived radioactivity in both animals and humans. In BDC mice and rats, most radioactivity was excreted in bile. The extent of radioactivity excreted in urine as a percentage of the administered [(14)C]canagliflozin dose was 1.2%-7.6% in animals and approximately 33% in humans. The primary pathways contributing to the metabolic clearance of canagliflozin were oxidation in animals and direct glucuronidation of canagliflozin in humans. Unchanged canagliflozin was the major component in systemic circulation in all species. In human plasma, two pharmacologically inactive O-glucuronide conjugates of canagliflozin, M5 and M7, represented 19% and 14% of total drug-related exposure and were considered major human metabolites. Plasma concentrations of M5 and M7 in mice and rats from repeated dose safety studies were lower than those in humans given canagliflozin at the maximum recommended dose of 300 mg. However, biliary metabolite profiling in rodents indicated that mouse and rat livers had significant exposure to M5 and M7. Pharmacologic inactivity and high water solubility of M5 and M7 support glucuronidation of canagliflozin as a safe detoxification pathway.
AuthorsRao N V S Mamidi, Filip Cuyckens, Jie Chen, Ellen Scheers, Dennis Kalamaridis, Ronghui Lin, Jose Silva, Sue Sha, David C Evans, Michael F Kelley, Damayanthi Devineni, Mark D Johnson, Heng Keang Lim
JournalDrug metabolism and disposition: the biological fate of chemicals (Drug Metab Dispos) Vol. 42 Issue 5 Pg. 903-16 (May 2014) ISSN: 1521-009X [Electronic] United States
PMID24568888 (Publication Type: Clinical Trial, Journal Article)
Chemical References
  • Carbon Radioisotopes
  • Glucosides
  • Glucuronides
  • Hypoglycemic Agents
  • Thiophenes
  • Canagliflozin
Topics
  • Administration, Oral
  • Adult
  • Animals
  • Bile (metabolism)
  • Canagliflozin
  • Carbon Radioisotopes
  • Dogs
  • Feces (chemistry)
  • Female
  • Glucosides (blood, metabolism, pharmacokinetics, urine)
  • Glucuronides (metabolism)
  • Humans
  • Hypoglycemic Agents (blood, metabolism, pharmacokinetics, urine)
  • Magnetic Resonance Spectroscopy
  • Male
  • Mice
  • Middle Aged
  • Rats
  • Rats, Sprague-Dawley
  • Species Specificity
  • Thiophenes (blood, metabolism, pharmacokinetics, urine)
  • Tissue Distribution
  • Young Adult

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: