HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling.

Abstract
Interstitial fibrosis is a powerful pejorative predictor of progression of nephropathies in a variety of chronic renal diseases. It is characterized by the depletion of kidney cells and their replacement by extracellular matrix, in particular, type-I fibrillar collagen, a protein scarce in normal interstitium. However, assessment of fibrosis remains a challenge in research and clinical pathology. We develop a novel methodology based on second harmonic generation (SHG) microscopy, and we image collagen fibers in human and mouse unstained kidneys. We take into account the variability in renal shape, and we develop automated image processing for quantitative scoring of thick murine tissues. This approach allows quantitative 3-D imaging of interstitial fibrosis and arterial remodeling with high accuracy. Moreover, SHG microscopy helps to raise pathophysiological questions. First, imaging of a large volume within a mouse kidney shows that progression of fibrosis is a heterogeneous process throughout the different renal compartments. Second, SHG from fibrillar collagens does not overlap with the glomerular tuft, despite patent clinical and experimental glomerulosclerosis. Since glomerulosclerosis involves SHG-silent nonfibrillar collagens, our work supports pathophysiological differences between interstitial fibrosis and glomerulosclerosis, a clearly nonfibrotic process.
AuthorsMathias Strupler, Monica Hernest, Cécile Fligny, Jean-Louis Martin, Pierre-Louis Tharaux, Marie-Claire Schanne-Klein
JournalJournal of biomedical optics (J Biomed Opt) 2008 Sep-Oct Vol. 13 Issue 5 Pg. 054041 ISSN: 1083-3668 [Print] United States
PMID19021421 (Publication Type: Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't)
Topics
  • Animals
  • Fibrosis
  • Humans
  • Hypertension, Renal (pathology)
  • Kidney (blood supply, pathology)
  • Kidney Diseases (pathology)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Microscopy, Fluorescence, Multiphoton (methods)
  • Renal Artery (pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: