HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Reduced susceptibility to two-stage skin carcinogenesis in mice with low circulating insulin-like growth factor I levels.

Abstract
Calorie restriction has been shown to inhibit epithelial carcinogenesis and this method of dietary restriction reduces many circulating proteins, including insulin-like growth factor I (IGF-I). Previously, we identified a relationship between elevated tissue IGF-I levels and enhanced susceptibility to chemically induced skin tumorigenesis. In this study, liver IGF-I-deficient (LID) mice, which have a 75% reduction in serum IGF-I, were subjected to the standard two-stage skin carcinogenesis protocol using 7,12-dimethylbenz(a)anthracene as the initiator and 12-O-tetradecanoylphorbol-13-acetate (TPA) as the promoter. We observed a significant reduction in epidermal thickness and labeling index in LID mice treated with either vehicle or TPA. A significant decrease in both tumor incidence and tumor multiplicity was observed in LID mice undergoing two-stage skin carcinogenesis relative to wild-type littermates. Western blot analyses of epidermal extracts revealed reduced activation of both the epidermal growth factor and IGF-I receptors in response to TPA treatment in LID mice. In addition, reduced activation of both Akt and the mammalian target of rapamycin (mTOR) was observed in LID mice following TPA treatment relative to wild-type controls. Signaling downstream of mTOR was also reduced. These data suggest a possible mechanism whereby reduced circulating IGF-I leads to attenuated activation of the Akt and mTOR signaling pathways, and thus, diminished epidermal response to tumor promotion, and ultimately, two-stage skin carcinogenesis. The current data also suggest that reduced circulating IGF-I levels which occur as a result of calorie restriction may lead to the inhibition of skin tumorigenesis, at least in part, by a similar mechanism.
AuthorsTricia Moore, Steve Carbajal, Linda Beltran, Susan N Perkins, Shoshana Yakar, Derek Leroith, Stephen D Hursting, John Digiovanni
JournalCancer research (Cancer Res) Vol. 68 Issue 10 Pg. 3680-8 (May 15 2008) ISSN: 1538-7445 [Electronic] United States
PMID18483250 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Benz(a)Anthracenes
  • 7,12-dihydroxymethylbenz(a)anthracene
  • Insulin-Like Growth Factor I
  • Protein Kinases
  • mTOR protein, mouse
  • TOR Serine-Threonine Kinases
  • Tetradecanoylphorbol Acetate
Topics
  • Animals
  • Benz(a)Anthracenes (pharmacology)
  • Cell Proliferation
  • Cell Transformation, Neoplastic
  • Epidermis (metabolism)
  • Female
  • Genetic Predisposition to Disease
  • Insulin-Like Growth Factor I (biosynthesis)
  • Mice
  • Models, Biological
  • Neoplasms (metabolism)
  • Protein Kinases (metabolism)
  • Signal Transduction
  • Skin Neoplasms (chemically induced, genetics, pathology)
  • TOR Serine-Threonine Kinases
  • Tetradecanoylphorbol Acetate (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: