HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Quantification of poly(I:C)-mediated protection against genital herpes simplex virus type 2 infection.

Abstract
Alternative strategies for controlling the growing herpes simplex virus type 2 (HSV-2) epidemic are needed. A novel class of immunomodulatory microbicides has shown promise as antiherpetics, including intravaginally applied CpG-containing oligodeoxynucleotides that stimulate toll-like receptor 9 (TLR9). In the current study, we quantified protection against experimental genital HSV-2 infection provided by an alternative nucleic acid-based TLR agonist, polyinosine-poly(C) (PIC) (TLR3 agonist). Using a protection quantification paradigm, groups of mice were PIC treated and then subdivided into groups challenged with escalating doses of HSV-2. Using this paradigm, a temporal window of PIC efficacy for single applications was defined as 1 day prior to (prophylactic) through 4 h after (therapeutic) viral challenge. PIC treatment within this window protected against 10-fold-higher HSV-2 challenges, as indicated by increased 50% infectious dose values relative to those for vehicle-treated controls. Disease resolution and survival were significantly enhanced by repetitive PIC doses. Using optimal PIC regimens, cytokine induction was evaluated in murine vaginal lavages and in human vaginal epithelial cells. Similar induction patterns were observed, with kinetics that explained the limited durability of PIC-afforded protection. Daily PIC delivery courses did not generate sustained cytokine levels in murine vaginal fluids that would be indicative of local immunotoxicity. No evidence of immunotoxicity was observed in selected organs that were analyzed following repetitive vaginal PIC doses. Animal and in vitro data indicate that PIC may prove to be a valuable preventative microbicide and/or therapeutic agent against genital herpes by increasing resistance to HSV-2 and enhancing disease resolution following a failure of prevention.
AuthorsMelissa M Herbst-Kralovetz, Richard B Pyles
JournalJournal of virology (J Virol) Vol. 80 Issue 20 Pg. 9988-97 (Oct 2006) ISSN: 0022-538X [Print] United States
PMID17005677 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Antiviral Agents
  • Cytokines
  • Immunologic Factors
  • TLR3 protein, human
  • Toll-Like Receptor 3
  • Poly I-C
Topics
  • Animals
  • Antiviral Agents (pharmacology)
  • Body Fluids (chemistry)
  • Cell Line
  • Cytokines (analysis)
  • Disease Models, Animal
  • Epithelial Cells (chemistry, immunology)
  • Female
  • Herpes Genitalis (drug therapy, prevention & control, virology)
  • Herpesvirus 2, Human (drug effects)
  • Humans
  • Immunologic Factors (pharmacology)
  • Mice
  • Mice, Inbred C57BL
  • Poly I-C (pharmacology)
  • Survival Analysis
  • Time Factors
  • Toll-Like Receptor 3 (immunology)
  • Vagina (immunology)
  • Vaginal Douching

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: