HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Biologic correlates of intratumoral heterogeneity in 18F-FDG distribution with regional expression of glucose transporters and hexokinase-II in experimental tumor.

AbstractUNLABELLED:
The biologic mechanisms involved in the intratumoral heterogeneous distribution of 18F-FDG have not been fully investigated. To clarify factors inducing heterogeneous 18F-FDG distribution, we determined the intratumoral distribution of 18F-FDG by autoradiography (ARG) and compared it with the regional expression levels of glucose transporters Glut-1 and Glut-3 and hexokinase-II (HK-II) in a rat model of malignant tumor.
METHODS:
Rats were inoculated with allogenic hepatoma cells (KDH-8) into the left calf muscle (n = 7). Tumor tissues were excised 1 h after the intravenous injection of 18F-FDG and sectioned to obtain 2 adjacent slices for ARG and histochemical studies. The regions of interest (ROIs) were placed on ARG images to cover mainly the central (CT) and peripheral (PT) regions of viable tumor tissues and necrotic/apoptotic (NA) regions. The radioactivity in each ROI was analyzed quantitatively using a computerized imaging analysis system. The expression levels of Glut-1, Glut-3, and HK-II were determined by immunostaining and semiquantitative evaluation. The hypoxia-inducible factor 1 (HIF-1) was also immunostained.
RESULTS:
ARG images showed that intratumoral 18F-FDG distribution was heterogeneous. The accumulation of 18F-FDG in the CT region was the highest, which was 1.6 and 2.3 times higher than those in the PT and NA regions, respectively (P < 0.001). The expression levels of Glut-1, Glut-3, and HK-II were markedly higher in the CT region (P < 0.001) compared with those in the PT region. The intratumoral distribution of 18F-FDG significantly correlated with the expression levels of Glut-1, Glut-3, and HK-II (r = 0.923, P < 0.001 for Glut-1; r = 0.829, P < 0.001 for Glut-3; and r = 0.764, P < 0.01 for HK-II). The positive staining of HIF-1 was observed in the CT region.
CONCLUSION:
These results demonstrate that intratumoral 18F-FDG distribution corresponds well to the expression levels of Glut-1, Glut-3, and HK-II. The elevated expression levels of Glut-1, Glut-3, and HK-II, induced by hypoxia (HIF-1), may be contributing factors to the higher 18F-FDG accumulation in the CT region.
AuthorsSongji Zhao, Yuji Kuge, Takafumi Mochizuki, Toshiyuki Takahashi, Kunihiro Nakada, Masayuki Sato, Toshiki Takei, Nagara Tamaki
JournalJournal of nuclear medicine : official publication, Society of Nuclear Medicine (J Nucl Med) Vol. 46 Issue 4 Pg. 675-82 (Apr 2005) ISSN: 0161-5505 [Print] United States
PMID15809491 (Publication Type: Evaluation Study, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Biomarkers, Tumor
  • Glucose Transporter Type 1
  • Glucose Transporter Type 3
  • Monosaccharide Transport Proteins
  • Nerve Tissue Proteins
  • Radiopharmaceuticals
  • Slc2a1 protein, rat
  • Slc2a3 protein, rat
  • Fluorodeoxyglucose F18
  • Hexokinase
Topics
  • Animals
  • Biomarkers, Tumor (metabolism)
  • Carcinoma, Hepatocellular (diagnostic imaging, metabolism)
  • Cell Line, Tumor
  • Fluorodeoxyglucose F18 (pharmacokinetics)
  • Gene Expression Profiling (methods)
  • Glucose Transporter Type 1
  • Glucose Transporter Type 3
  • Hexokinase (metabolism)
  • Male
  • Monosaccharide Transport Proteins (metabolism)
  • Nerve Tissue Proteins (metabolism)
  • Radionuclide Imaging
  • Radiopharmaceuticals (pharmacokinetics)
  • Rats
  • Rats, Wistar
  • Statistics as Topic

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: