HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Pathogenic mechanisms in systemic lupus erythematosus.

Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease characterized by the dysfunction of T cells, B cells, and dendritic cells and by the production of antinuclear autoantibodies. This editorial provides a synopsis of newly discovered genetic factors and signaling pathways in lupus pathogenesis that are documented in 11 state-of-the-art reviews and original articles. Mitochondrial hyperpolarization underlies mitochondrial dysfunction, depletion of ATP, oxidative stress, abnormal activation, and death signal processing in lupus T cells. The mammalian target of rapamycin, which is a sensor of the mitochondrial transmembrane potential, has been successfully targeted for treatment of SLE with rapamycin or sirolimus in both patients and animal models. Inhibition of oxidative stress, nitric oxide production, expression of endogenous retroviral and repetitive elements such as HRES-1, the long interspersed nuclear elements 1, Trex1, interferon alpha (IFN-alpha), toll-like receptors 7 and 9 (TLR-7/9), high-mobility group B1 protein, extracellular signal-regulated kinase, DNA methyl transferase 1, histone deacetylase, spleen tyrosine kinase, proteasome function, lysosome function, endosome recycling, actin cytoskeleton formation, the nuclear factor kappa B pathway, and activation of cytotoxic T cells showed efficacy in animal models of lupus. Although B cell depletion and blockade of anti-DNA antibodies and T-B cell interaction have shown success in animal models, human studies are currently ongoing to establish the value of several target molecules for treatment of patients with lupus. Ongoing oxidative stress and inflammation lead to accelerated atherosclerosis that emerged as a significant cause of mortality in SLE.
AuthorsAndras Perl
JournalAutoimmunity (Autoimmunity) Vol. 43 Issue 1 Pg. 1-6 (Feb 2010) ISSN: 1607-842X [Electronic] England
PMID20014960 (Publication Type: Editorial, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Autoantibodies
Topics
  • Animals
  • Autoantibodies (immunology)
  • Epigenesis, Genetic
  • Humans
  • Lupus Erythematosus, Systemic (genetics, immunology, metabolism, pathology)
  • Oxidative Stress
  • Signal Transduction

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: