HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Integrating Network Pharmacology and Experimental Validation to Explore the Effects and Mechanisms of Qinghao Biejia Decoction and Its Active Compound Artemisinin B Against Non-Small-Cell Lung Cancer.

AbstractPurpose:
To explore the pharmacological effects and mechanisms of Qinghao Biejia decoction (QBD) against non-small-cell lung cancer (NSCLC) based on network pharmacology and to verify the anticancer effect of artemisinin B (ART B), the active ingredient of QBD, on H1299 cells.
Methods:
Ultra-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-QTOF-MS/MS) was applied to explore the chemoprofile of QBD. A zebrafish xenograft model was used to determine the anti-cancer efficacy of QBD. Cell counting kit-8 assay, terminal deoxyribonucleotide transferase-mediated-dUTP nick-end labeling assay; immunofluorescence, and flow cytometry were used to evaluate the in vitro anti-proliferative and pro-apoptotic effects of QBD and ART B on H1299 cells. Subsequently, the related targets and action mechanisms of both QBD and ART B predicted by network pharmacological analyses were experimentally validated by real-time PCR and Western blot assays on H1299 cells.
Results:
UPLC-QTOF-MS/MS identified a total of 69 compounds (such as ART B, mangiferin, and artemisinic acid) in QBD. The in vivo data showed that QBD significantly inhibited the growth of H1299 cells in xenograft larval zebrafish from 125 to 500 μg/mL. The in vitro data showed that QBD induced apoptosis of H1299 cells, accompanied by down-regulating the expression of BCL-2 and up-regulating the expression of BIM, PUMA, BAX, c-PARP, γ-H2A.X, c-CASP3, and c-CASP8. Alike QBD, ART B exerted similar anti-proliferative and pro-apoptotic effects on H1299 cells. Moreover, ART B inhibited expressions of BCL2L1, AKT1, AKT2, MMP-2, and EGFR, and up-regulated ALB expression. Mechanistically, ART B promoted apoptosis of H1299 cells by inhibiting PI3K/Akt signaling pathway.
Conclusion:
This study revealed the anti-NSCLC efficacy of QBD. ART B, the effective component of QBD, plays an anti-NSCLC role by down-regulating the PI3K-Akt signaling pathway. It suggests that QBD and ART B are promising drug candidates for NSCLC treatment.
AuthorsYonghua Ye, Yuping Yang, Li Yan, Li Zhou, Shihui Yu, Quan Du, Xiaoqiao Dong, Qiang Yuan, Letian Shan, Le Guo
JournalDrug design, development and therapy (Drug Des Devel Ther) Vol. 17 Pg. 2461-2479 ( 2023) ISSN: 1177-8881 [Electronic] New Zealand
PMID37637262 (Publication Type: Journal Article)
Copyright© 2023 Ye et al.
Chemical References
  • artemisinin B
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • artemisinin
Topics
  • Humans
  • Animals
  • Carcinoma, Non-Small-Cell Lung (drug therapy)
  • Artemisia annua
  • Zebrafish
  • Network Pharmacology
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • Tandem Mass Spectrometry
  • Lung Neoplasms (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: