HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

3D Printing of Multimaterial Contact Lenses.

Abstract
3D printing of multimaterial objects is an emerging field with promising applications. The layer-by-layer material addition technique used in 3D printing enables incorporation of distinct functionalized materials into the specialized devices. However, very few studies have been performed on the usage of multimaterial 3D printing for printable photonic and wearable devices. Here, we employ vat photopolymerization-based 3D printing to produce multimaterial contact lenses, offering enhanced multiband optical filtration, which can be valuable for tackling ocular conditions such as color blindness. A combination of hydroxyethyl methacrylate (HEMA) and polyethylene glycol diacrylate (PEGDA) was used as the base hydrogel for 3D printing. Atto565 and Atto488 dyes were added to the hydrogel for wavelength filtering, each dye suitable for a different type of color blindness. Multimaterial disks and contact lenses, with separate sections containing distinct dyes, were 3D-printed, and their optical properties were studied. The characteristics of multimaterial printing were analyzed, focusing on the formation of a uniform multimaterial interface. In addition, a novel technique was developed for printing multiple dyed materials in complex lateral geometrical patterns, by employing suitable variations in CAD models and the UV curing time. It was observed that the multimaterial printing process does not negatively affect the optical properties of the contact lenses. The printed multimaterial contact lenses offered a combined multi-band color blindness correction due to the two dyes used. The resulting optical spectrum was a close match to the commercially available color blindness correction glasses.
AuthorsMuhammed Hisham, Ahmed E Salih, Haider Butt
JournalACS biomaterials science & engineering (ACS Biomater Sci Eng) Vol. 9 Issue 7 Pg. 4381-4391 (07 10 2023) ISSN: 2373-9878 [Electronic] United States
PMID37364228 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Hydrogels
Topics
  • Printing, Three-Dimensional
  • Contact Lenses
  • Hydrogels (chemistry)
  • Software
  • Materials Testing

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: