HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Droplet Digital PCR for Non-Invasive Prenatal Detection of Fetal Single-Gene Point Mutations in Maternal Plasma.

Abstract
Non-invasive prenatal testing (NIPT) is based on the detection and characterization of circulating cell-free fetal DNA (ccffDNA) in maternal plasma and aims to identify genetic abnormalities. At present, commercial NIPT kits can detect only aneuploidies, small deletions and insertions and some paternally inherited single-gene point mutations causing genetic diseases, but not maternally inherited ones. In this work, we have developed two NIPT assays, based on the innovative and sensitive droplet digital PCR (ddPCR) technology, to identify the two most common β thalassemia mutations in the Mediterranean area (β+IVSI-110 and β039), maternally and/or paternally inherited, by fetal genotyping. The assays were optimized in terms of amplification efficiency and hybridization specificity, using mixtures of two genomic DNAs with different genotypes and percentages to simulate fetal and maternal circulating cell-free DNA (ccfDNA) at various gestational weeks. The two ddPCR assays were then applied to determine the fetal genotype from 52 maternal plasma samples at different gestational ages. The diagnostic outcomes were confirmed for all the samples by DNA sequencing. In the case of mutations inherited from the mother or from both parents, a precise dosage of normal and mutated alleles was required to determine the fetal genotype. In particular, we identified two diagnostic ranges for allelic ratio values statistically distinct and not overlapping, allowing correct fetal genotype determinations for almost all the analyzed samples. In conclusion, we have developed a simple and sensitive diagnostic tool, based on ddPCR, for the NIPT of β+IVSI-110 and β039 mutations paternally and, for the first time, maternally inherited, a tool, which may be applied to other single point mutations causing monogenic diseases.
AuthorsElisabetta D'Aversa, Giulia Breveglieri, Effrossyni Boutou, Angeliki Balassopoulou, Ersi Voskaridou, Patrizia Pellegatti, Giovanni Guerra, Chiara Scapoli, Roberto Gambari, Monica Borgatti
JournalInternational journal of molecular sciences (Int J Mol Sci) Vol. 23 Issue 5 (Mar 04 2022) ISSN: 1422-0067 [Electronic] Switzerland
PMID35269962 (Publication Type: Journal Article)
Chemical References
  • Cell-Free Nucleic Acids
Topics
  • Cell-Free Nucleic Acids (genetics)
  • Female
  • Humans
  • Mutation
  • Point Mutation
  • Polymerase Chain Reaction
  • Pregnancy
  • Prenatal Diagnosis
  • beta-Thalassemia (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: