HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Non-linear explicit micro-FE models accurately predict axial pull-out force of cortical screws in human tibial cortical bone.

Abstract
Screws are the most frequently used implants for treatment of bone fractures and play an essential role in determining fixation stability. Robust prediction of the bone-screw interface failure would enable development of improved fixation strategies and implant designs, ultimately reducing failure rates and improving outcomes of bone fracture treatments. This study aimed to compare the accuracy of micro-computed tomography image based bone volume measures, linear micro-finite element (FE) and non-linear micro-FE simulations in predicting pull-out force of 3.5 mm screws in human cadaveric tibial cortical bone. Axial pull-out experiments were performed in forty samples harvested from a single human tibia to measure ultimate force, which was correlated with bone volume around the screw and the predictions by both linear micro-FE and non-linear explicit micro-FE models. Correlation strength was similar for bone volume around the screw (R2 = 0.866) and linear micro-FE (R2 = 0.861), but the explicit non-linear micro-FE models were able to capture the experimental results more accurately (R2 = 0.913) and quantitatively correctly. Therefore, this technique may have potential for future in silico studies aiming at implant design optimization.
AuthorsMarzieh Ovesy, Juan Diego Silva-Henao, James W A Fletcher, Boyko Gueorguiev, Philippe K Zysset, Peter Varga
JournalJournal of the mechanical behavior of biomedical materials (J Mech Behav Biomed Mater) Vol. 126 Pg. 105002 (02 2022) ISSN: 1878-0180 [Electronic] Netherlands
PMID34894498 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2021 Elsevier Ltd. All rights reserved.
Topics
  • Biomechanical Phenomena
  • Bone Screws
  • Cortical Bone (diagnostic imaging)
  • Finite Element Analysis
  • Humans
  • Tibia
  • X-Ray Microtomography

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: