HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mechanism of a methylxanthine drug theophylline-induced Ca2+ signaling and cytotoxicity in AML12 mouse hepatocytes.

Abstract
Theophylline is a methylxanthine drug used in therapy for respiratory diseases. However, the impact of theophylline on Ca2+ signaling has not been explored in liver cells. This study examined whether theophylline affected Ca2+ homeostasis and its related cytotoxicity in AML12 mouse hepatocytes. Cell viability was measured by the cell viability reagent (WST-1). Cytosolic Ca2+ concentration ([Ca2+]i) was measured by the Ca2+-sensitive fluorescent dye fura-2. Theophylline (25-125 μM) induced [Ca2+]i rises and cause cytotoxicity in AML12 cells. This cytotoxic response was reversed by chelation of cytosolic Ca2+ with BAPTA/AM. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished theophylline-induced [Ca2+]i rises. Conversely, treatment with theophylline also abolished thapsigargin-induced [Ca2+]i rises. However, inhibition of PLC failed to alter theophylline-evoked [Ca2+]i rises. In Ca2+-containing medium, modulators of store-operated Ca2+ channels inhibited 30% of the [Ca2+]i rises, whereas the PKC modulators had no effect. Furthermore, theophylline-induced Ca2+ influx was confirmed by Mn2+-induced quench of fura-2 fluorescence. Together, in AML12 cells, theophylline caused Ca2+-associated cytotoxicity and induced Ca2+ entry through PLC-independent Ca2+ release from the endoplasmic reticulum and PKC-insensitive store-operated Ca2+ channels. BAPTA-AM with its protective effects may be a potential compound for prevention of theophylline-induced cytotoxicity.
AuthorsGwo-Ching Sun, Wei-Zhe Liang
JournalToxicology research (Toxicol Res (Camb)) Vol. 9 Issue 6 Pg. 790-797 (Dec 2020) ISSN: 2045-452X [Print] England
PMID33447363 (Publication Type: Journal Article)
Copyright© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: [email protected].

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: