HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Potent in vitro anti-SARS-CoV-2 activity by gallinamide A and analogues via inhibition of cathepsin L.

Abstract
The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target. The marine natural product, gallinamide A and several synthetic analogues, were identified as potent inhibitors of cathepsin L activity with IC 50 values in the picomolar range. Lead molecules possessed selectivity over cathepsin B and other related human cathepsin proteases and did not exhibit inhibitory activity against viral proteases Mpro and PLpro. We demonstrate that gallinamide A and two lead analogues potently inhibit SARS-CoV-2 infection in vitro , with EC 50 values in the nanomolar range, thus further highlighting the potential of cathepsin L as a COVID-19 antiviral drug target.
AuthorsAnneliese S Ashhurst, Arthur H Tang, Pavla Fajtová, Michael Yoon, Anupriya Aggarwal, Alexander Stoye, Mark Larance, Laura Beretta, Aleksandra Drelich, Danielle Skinner, Linfeng Li, Thomas D Meek, James H McKerrow, Vivian Hook, Chien-Te K Tseng, Stuart Turville, William H Gerwick, Anthony J O'Donoghue, Richard J Payne
JournalbioRxiv : the preprint server for biology (bioRxiv) (Dec 24 2020) United States
PMID33398273 (Publication Type: Preprint)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: