HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Enhancing antibody-dependent cellular phagocytosis by Re-education of tumor-associated macrophages with resiquimod-encapsulated liposomes.

Abstract
Tumor-associated macrophages (TAMs) exist in nearly all tumors, and form a major part of the tumor microenvironment. TAMs are divided into two groups: tumor-suppressing M1 type and tumor-promoting M2 type. Most TAMs are educated by the tumor cells to become M2 type, which support tumor growth and make immunotherapy ineffective. Antibody-dependent cellular phagocytosis (ADCP) is an important mechanism for antibody cancer therapy, and this mechanism is dependent on TAMs. In this study, we found that the M1 type macrophages elicit a more efficient ADCP response than the M2 type, which was confirmed by three tumor cell lines, Raji, A431, and SKBR3, along with their corresponding therapeutic antibody Rituximab, anti-EGFR mouse monoclonal antibody (clone 528), and Trastuzumab, respectively. Resiquimod (R848), an immune system activating agent, has been shown to stimulate the M1 type macrophages, and re-educate the TAMs from M2 type to M1 type. By treating TAMs with R848, the ADCP response increased significantly in vitro and in in vivo mouse xenograft models. R848 encapsulated liposomes (R848-LPs) not only accumulated efficiently in the tumor tissues, but also distributed in the TAMs. Synergizing the R848-LPs with the anti-EGFR mouse monoclonal antibody (clone 528) significantly inhibited WiDr-tumor growth in vivo. Our study also revealed that the TAM-targeted delivery of R848 is able to re-educate the TAMs to M1 type, enhance the ADCP effect of the antibodies, and hence, enhance the anti-tumor effect of the therapeutic antibodies.
AuthorsHao Li, Masaharu Somiya, Shun'ichi Kuroda
JournalBiomaterials (Biomaterials) Vol. 268 Pg. 120601 (01 2021) ISSN: 1878-5905 [Electronic] Netherlands
PMID33338932 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2020 Elsevier Ltd. All rights reserved.
Chemical References
  • Imidazoles
  • Liposomes
  • resiquimod
Topics
  • Animals
  • Cytophagocytosis
  • Imidazoles
  • Liposomes
  • Mice
  • Phagocytosis
  • Tumor Microenvironment
  • Tumor-Associated Macrophages

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: