HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ultrasonic assisted synthesis of styrylpyridinium dyes: Optical properties and DFT calculations.

Abstract
The ultrasonic technique has received considerable attention in several fields; in particular, it gained rapid momentum in organic synthesis due to the larger reaction rates, milder reaction conditions, and better yields. We report herein a facile synthesis of a series of styrylpyridinium based dyes under ultrasonic irradiation. Within short reaction time (15 min) under ultrasonic irradiation, compared to normal laboratory conditions, (4-16 h), we can achieve good to excellent yields. The reaction time is shortened because ultrasound can accelerate the generation of the nucleophile of the pyridinium salt and subsequently a nucleophilic addition of an aldehyde followed by dehydration affords the styrylpyridinium dye, (Knoevenagel condensation). The photophysical properties of all compounds are comprehensively investigated in different solvents. All the compounds exhibit negative solvatochromism both in absorption and fluorescence emission spectra. Such behavior is due to the higher dipole moment of these molecules at the ground state. DFT calculations were performed to understand the electronic structure of the molecules. Our results show the high efficacy of sonochemistry over other methods for preparation of styrylpyridinium dyes.
AuthorsAbed Saady, Pagidi Sudhakar, Molhm Nassir, Aharon Gedanken
JournalUltrasonics sonochemistry (Ultrason Sonochem) Vol. 67 Pg. 105182 (Oct 2020) ISSN: 1873-2828 [Electronic] Netherlands
PMID32485662 (Publication Type: Journal Article)
CopyrightCopyright © 2020 Elsevier B.V. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: