HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Therapeutic effects of CO-releaser/Nrf2 activator hybrids (HYCOs) in the treatment of skin wound, psoriasis and multiple sclerosis.

Abstract
Carbon monoxide (CO) produced by heme oxygenase-1 (HO-1) or delivered by CO-releasing molecules (CO-RMs) exerts anti-inflammatory action, a feature also exhibited by the nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of the stress response. We have recently developed new hybrid molecules (HYCOs) consisting of CO-RMs conjugated to fumaric esters known to activate Nrf2/HO-1. Here we evaluated the biological activities of manganese (Mn) and ruthenium (Ru)-based HYCOs in human monocytes and keratinocytes in vitro as well as in vivo models of inflammation. The effects of HYCOs were compared to: a) dimethyl fumarate (DMF), a known fumaric ester used in the clinic; b) a CO-RM alone; or c) the combination of the two compounds. Mn-HYCOs donated CO and up-regulated Nrf2/HO-1 in vitro more efficiently than Ru-HYCOs. However, irrespective of the metal, a strong reduction in anti-inflammatory markers in monocytes stimulated by LPS was observed with specific HYCOs. This effect was not observed with DMF, CO-RM alone or the combination of the two, indicating the enhanced potency of HYCOs compared to the separate entities. Selected HYCOs given orally to mice accelerated skin wound closure, reduced psoriasis-mediated inflammation and disease symptoms equalling or surpassing the effect of DMF, and ameliorated motor dysfunction in a mouse model of multiple sclerosis. Thus, HYCOs have potent anti-inflammatory activities that are recapitulated in disease models in which inflammation is a prominent component. Prolonged daily administration of HYCOs (up to 40 days) is well tolerated in animals. Our results clearly confirm that HYCOs possess a dual mode of action highlighting the notion that simultaneous Nrf2 targeting and CO delivery could be a clinically relevant application to combat inflammation.
AuthorsZeina El Ali, Anthony Ollivier, Sylvie Manin, Michael Rivard, Roberto Motterlini, Roberta Foresti
JournalRedox biology (Redox Biol) Vol. 34 Pg. 101521 (07 2020) ISSN: 2213-2317 [Electronic] Netherlands
PMID32335359 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2020 The Authors. Published by Elsevier B.V. All rights reserved.
Chemical References
  • Membrane Proteins
  • NF-E2-Related Factor 2
  • Nfe2l2 protein, mouse
  • Heme Oxygenase-1
  • Hmox1 protein, mouse
Topics
  • Animals
  • Heme Oxygenase-1 (genetics)
  • Inflammation (drug therapy)
  • Membrane Proteins
  • Mice
  • Multiple Sclerosis
  • NF-E2-Related Factor 2
  • Psoriasis (drug therapy)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: