HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Depolysulfidation of Drp1 induced by low-dose methylmercury exposure increases cardiac vulnerability to hemodynamic overload.

Abstract
Chronic exposure to methylmercury (MeHg), an environmental electrophilic pollutant, reportedly increases the risk of human cardiac events. We report that exposure to a low, non-neurotoxic dose of MeHg precipitated heart failure induced by pressure overload in mice. Exposure to MeHg at 10 ppm did not induce weight loss typical of higher doses but caused mitochondrial hyperfission in myocardium through the activation of Drp1 by its guanine nucleotide exchange factor filamin-A. Treatment of neonatal rat cardiomyocytes with cilnidipine, an inhibitor of the interaction between Drp1 and filamin-A, suppressed mitochondrial hyperfission caused by low-dose MeHg exposure. Modification of cysteine residues in proteins with polysulfides is important for redox signaling and mitochondrial homeostasis in mammalian cells. We found that MeHg targeted rat Drp1 at Cys624, a redox-sensitive residue whose SH side chain forms a bulky and nucleophilic polysulfide (Cys624-S(n)H). MeHg exposure induced the depolysulfidation of Cys624-S(n)H in Drp1, which led to filamin-dependent activation of Drp1 and mitochondrial hyperfission. Treatment with NaHS, which acts as a donor for reactive polysulfides, reversed MeHg-evoked Drp1 depolysulfidation and vulnerability to mechanical load in rodent and human cardiomyocytes and mouse hearts. These results suggest that depolysulfidation of Drp1 at Cys624-S(n)H by low-dose MeHg increases cardiac fragility to mechanical load through filamin-dependent mitochondrial hyperfission.
AuthorsAkiyuki Nishimura, Kakeru Shimoda, Tomohiro Tanaka, Takashi Toyama, Kazuhiro Nishiyama, Yasuhiro Shinkai, Takuro Numaga-Tomita, Daiju Yamazaki, Yasunari Kanda, Takaaki Akaike, Yoshito Kumagai, Motohiro Nishida
JournalScience signaling (Sci Signal) Vol. 12 Issue 587 (06 25 2019) ISSN: 1937-9145 [Electronic] United States
PMID31239323 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Chemical References
  • Methylmercury Compounds
  • DNM1L protein, human
  • Dnm1l protein, mouse
  • Dnm1l protein, rat
  • Dynamins
  • methylmercuric chloride
Topics
  • Animals
  • Dynamins (metabolism)
  • Heart Failure (chemically induced, metabolism, pathology)
  • Hemodynamics (drug effects)
  • Humans
  • Male
  • Methylmercury Compounds (toxicity)
  • Mice
  • Mitochondria, Heart (metabolism, pathology)
  • Myocytes, Cardiac (metabolism, pathology)
  • Rats

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: