HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects.

Abstract
Idebenone is a hydrophilic short-chain coenzyme (Co) Q analogue, which has been used as a potential bypass of defective complex I in both Leber Hereditary Optic Neuropathy and OPA1-dependent Dominant Optic Atrophy. Based on its potential antioxidant effects, it has also been tested in degenerative disorders such as Friedreich's ataxia, Huntington's and Alzheimer's diseases. Idebenone is rapidly modified but the biological effects of its metabolites have been characterized only partially. Here we have studied the effects of quinones generated during in vivo metabolism of idebenone with specific emphasis on 6-(9-carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone (QS10). QS10 partially restored respiration in cells deficient of complex I or of CoQ without inducing the mitochondrial permeability transition, a detrimental effect of idebenone that may offset its potential benefits [Giorgio et al. (2012) Biochim. Biophys. Acta 1817: 363-369]. Remarkably, respiration was largely rotenone-insensitive in complex I deficient cells and rotenone-sensitive in CoQ deficient cells. These findings indicate that, like idebenone, QS10 can provide a bypass to defective complex I; and that, unlike idebenone, QS10 can partially replace endogenous CoQ. In zebrafish (Danio rerio) treated with rotenone, QS10 was more effective than idebenone in allowing partial recovery of respiration (to 40% and 20% of the basal respiration of untreated embryos, respectively) and allowing zebrafish survival (80% surviving embryos at 60 h post-fertilization, a time point at which all rotenone-treated embryos otherwise died). We conclude that QS10 is potentially more active than idebenone in the treatment of diseases caused by complex I defects, and that it could also be used in CoQ deficiencies of genetic and acquired origin.
AuthorsValentina Giorgio, Marco Schiavone, Chiara Galber, Marco Carini, Tatiana Da Ros, Valeria Petronilli, Francesco Argenton, Valerio Carelli, Manuel J Acosta Lopez, Leonardo Salviati, Maurizio Prato, Paolo Bernardi
JournalBiochimica et biophysica acta. Bioenergetics (Biochim Biophys Acta Bioenerg) Vol. 1859 Issue 9 Pg. 901-908 (09 2018) ISSN: 0005-2728 [Print] Netherlands
PMID29694828 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2018 Elsevier B.V. All rights reserved.
Chemical References
  • Antioxidants
  • Ubiquinone
  • Adenosine Triphosphate
  • Electron Transport Complex I
  • idebenone
Topics
  • Adenosine Triphosphate (metabolism)
  • Animals
  • Antioxidants (chemistry, pharmacology)
  • Ataxia (metabolism, pathology)
  • Cell Respiration
  • Cells, Cultured
  • Electron Transport
  • Electron Transport Complex I (deficiency, metabolism)
  • Embryo, Nonmammalian (cytology, drug effects, metabolism)
  • Mice
  • Mitochondria, Liver (drug effects, metabolism)
  • Mitochondrial Diseases (metabolism, pathology)
  • Muscle Weakness (metabolism, pathology)
  • Ubiquinone (analogs & derivatives, chemistry, deficiency, metabolism, pharmacology)
  • Zebrafish (embryology, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: