HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Autophagy activation promotes bevacizumab resistance in glioblastoma by suppressing Akt/mTOR signaling pathway.

Abstract
Glioblastomas are the most common primary and malignant brain tumors. The standard therapy includes surgery and radiotherapy plus chemotherapy, with additional bevacizumab to block the angiogenesis in tumors. However, the ever-growing tolerance of glioblastomas to chemotherapeutic drugs impairs the clinical outputs of tumor treatment. The present study investigated the tolerance of glioblastomas to bevacizumab. Although bevacizumab resulted in direct anti-proliferation and pro-apoptosis effects on glioblastoma cells via downregulating the anti-apoptotic proteins and upregulating the pro-apoptotic proteins, tolerance was also encountered that was mainly caused by autophagy induction in tumor cells. The suppressed Akt-mTOR signaling pathway led to the upregulated autophagy process. Blockade of the autophagy process significantly increased the tumor-suppressive effect of bevacizumab on glioblastoma cells. To our knowledge, the present study is the first to report the involvement of autophagy in the tolerance of glioblastomas to bevacizumab. Therefore, autophagy inhibition may be considered a novel way to overcome the tolerance of glioblastomas to anti-angiogenic agents.
AuthorsHe Huang, Jian Song, Zheng Liu, Li Pan, Guozheng Xu
JournalOncology letters (Oncol Lett) Vol. 15 Issue 2 Pg. 1487-1494 (Feb 2018) ISSN: 1792-1074 [Print] Greece
PMID29434840 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: