HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Crosstalk Between Sphingomyelinases and Reactive Oxygen Species in Mycobacterial Infection.

Abstract
Significance: Tuberculosis (TB), which is caused by Mycobacterium tuberculosis, is one of the most important infections worldwide. The sphingomyelinase/ceramide system, which has been shown to be a crucial factor in internalizing and killing various pathogens, modulates both the proinflammatory response and the state of mycobacteria in macrophages. However, studies about the role of sphingomyelinases in TB are still at an early stage. Recent Advances: Recent studies elucidated several roles of sphingomyelinases in manipulating mycobacterial infections. On the one hand, acid sphingomyelinase (Asm) promotes the fusion of bacteria-containing phagosomes and lysosomes, whereas on the other hand, Asm-derived ceramide induces cell death. Neutral sphingomyelinase (Nsm) enhances the release of reactive oxygen species, which suppress autophagy in infected macrophages in vitro and in vivo, allowing the pathogen to survive within macrophages. These findings indicate that the sphingomyelinase/ceramide system plays an important role in the attack of mycobacteria against the host. Critical Issues: Autophagy is a main strategy of mycobacterial clearance in TB, but the relevant mechanisms are still unknown. Additionally, there are indications that both Asm and Nsm are crucially involved in the formation of granulomas, which are a hallmark and a special structure of TB. However, very few findings have yet been published. Future Directions: Additional studies of the Nsm/ceramide system, which contributes to the resistance or susceptibility, respectively, of the host to mycobacterial infections, will detect currently unknown molecular mechanisms. Because inhibitors of Nsm already exist, targeting Nsm may be a novel approach to developing treatment options for mycobacterial infections. Antioxid. Redox Signal. 28, 935-948.
AuthorsYuqing Wu, Erich Gulbins, Heike Grassmé
JournalAntioxidants & redox signaling (Antioxid Redox Signal) Vol. 28 Issue 10 Pg. 935-948 (Apr 01 2018) ISSN: 1557-7716 [Electronic] United States
PMID28276697 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: