HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Self-Assembling NanoLuc Luciferase Fragments as Probes for Protein Aggregation in Living Cells.

Abstract
Given the clear role of protein aggregation in human disease, there is a critical need for assays capable of quantifying protein aggregation in living systems. We hypothesized that the inherently low background and biocompatibility of luminescence signal readouts could provide a potential solution to this problem. Herein, we describe a set of self-assembling NanoLuc luciferase (Nluc) fragments that produce a tunable luminescence readout that is dependent upon the solubility of a target protein fused to the N-terminal Nluc fragment. To demonstrate this approach, we employed this assay in bacteria to assess mutations known to disrupt amyloid-beta (Aβ) aggregation as well as disease-relevant mutations associated with familial Alzheimer's diseases. The luminescence signal from these experiments correlates with the reported aggregation potential of these Aβ mutants and reinforces the increased aggregation potential of disease-relevant mutations in Aβ1-42. To further demonstrate the utility of this approach, we show that the effect of small molecule inhibitors on Aβ aggregation can be monitored using this system. In addition, we demonstrate that aggregation assays can be ported into mammalian cells. Taken together, these results indicate that this platform could be used to rapidly screen for mutations that influence protein aggregation as well as inhibitors of protein aggregation. This method offers a novel, genetically encodable luminescence readout of protein aggregation in living cells.
AuthorsJia Zhao, Travis J Nelson, Quyen Vu, Tiffany Truong, Cliff I Stains
JournalACS chemical biology (ACS Chem Biol) Vol. 11 Issue 1 Pg. 132-8 (Jan 15 2016) ISSN: 1554-8937 [Electronic] United States
PMID26492083 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Amyloid beta-Peptides
  • Peptide Fragments
  • Luciferases
Topics
  • Amyloid beta-Peptides (chemistry, metabolism)
  • Animals
  • Bacteria (metabolism)
  • Biological Assay (methods)
  • Blotting, Western
  • Cloning, Molecular
  • Humans
  • Luciferases (chemistry, genetics, metabolism)
  • Mice
  • Mutation
  • NIH 3T3 Cells
  • Peptide Fragments (chemistry, metabolism)
  • Protein Aggregation, Pathological (diagnosis)
  • Protein Binding

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: