HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Response to ethanol induced ataxia between C57BL/6J and 129X1/SvJ mouse strains using a treadmill based assay.

Abstract
More sensitive assays of mouse motor ataxia may provide a better understanding of the pathological profile. Treadmill gait analysis using ventral imaging allows for unhindered access to the ambulating mouse. In contrast to genetic mutations or exogenous brain injury, ethanol (EtOH) allows for the detection of dose dependent changes in motor behavior, which can be used to assess an assay's detection sensitivity. EtOH induced ataxia was assessed in C57BL/6J (B6) and 129X1/SvJ (129) mice using the DigiGait imaging system. Gait was analyzed across EtOH dosage (1.75, 2.25 and 2.75 g/kg) in each strain using a linear mixed effects model. Overall, 129 mice displayed greater susceptibility to EtOH ataxia than their B6 counterparts. In both strains, hind paws exhibited greater sensitivity to EtOH dosage than fore paws. Across most variables analyzed, only a modest EtOH-induced change in motor behavior was observed in each strain with the 1.75 g/kg EtOH doses failing to elicit significant change. These data indicate the ability to detect motor differences between strains, yet only moderate ability to detect change across EtOH dosage using the automated treadmill. Rotarod assays, however, were able to detect motor impairment at lower doses of EtOH. The significant, but opposite changes in paw placement with increasing EtOH doses highlight strain-specific differences in biophysical adaptations in response to acute EtOH intoxication.
AuthorsStephen T Hansen, Stefan M Pulst
JournalPharmacology, biochemistry, and behavior (Pharmacol Biochem Behav) Vol. 103 Issue 3 Pg. 582-8 (Jan 2013) ISSN: 1873-5177 [Electronic] United States
PMID23103202 (Publication Type: Comparative Study, Journal Article, Research Support, N.I.H., Extramural)
CopyrightCopyright © 2012 Elsevier Inc. All rights reserved.
Chemical References
  • Ethanol
Topics
  • Animals
  • Dose-Response Relationship, Drug
  • Ethanol (pharmacokinetics, pharmacology)
  • Female
  • Gait (drug effects, genetics, physiology)
  • Gait Ataxia (chemically induced, genetics, physiopathology)
  • Male
  • Mice
  • Mice, 129 Strain
  • Mice, Inbred C57BL
  • Rotarod Performance Test
  • Species Specificity

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: