HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling.

Abstract
The IFN-inducible immunity-related p47 GTPase Irgm1 has been linked to Crohn disease as well as susceptibility to tuberculosis. Previously we demonstrated that HSC quiescence and function are aberrant in mice lacking Irgm1. To investigate the molecular basis for these defects, we conducted microarray expression profiling of Irgm1-deficient HSCs. Cell-cycle and IFN-response genes are up-regulated in Irgm1(-/-) HSCs, consistent with dysregulated IFN signaling. To test the hypothesis that Irgm1 normally down-regulates IFN signaling in HSCs, we generated Irgm1(-/-)Ifngr1(-/-) and Irgm1(-/-)Stat1(-/-) double-knockout animals. Strikingly, hyperproliferation, self-renewal, and autophagy defects in Irgm1(-/-) HSCs were normalized in double-knockout animals. These defects were also abolished in Irgm1(-/-)Irgm3(-/-) double-knockout animals, indicating that Irgm1 may regulate Irgm3 activity. Furthermore, the number of HSCs was reduced in aged Irgm1(-/-) animals, suggesting that negative feedback inhibition of IFN signaling by Irgm1 is necessary to prevent hyperproliferation and depletion of the stem cell compartment. Collectively, our results indicate that Irgm1 is a powerful negative regulator of IFN-dependent stimulation in HSCs, with an essential role in preserving HSC number and function. The deleterious effects of excessive IFN signaling may explain how hematologic abnormalities arise in patients with inflammatory conditions.
AuthorsKatherine Y King, Megan T Baldridge, David C Weksberg, Stuart M Chambers, Georgi L Lukov, Shihua Wu, Nathan C Boles, Sung Yun Jung, Jun Qin, Dan Liu, Zhou Songyang, N Tony Eissa, Gregory A Taylor, Margaret A Goodell
JournalBlood (Blood) Vol. 118 Issue 6 Pg. 1525-33 (Aug 11 2011) ISSN: 1528-0020 [Electronic] United States
PMID21633090 (Publication Type: Journal Article, Research Support, N.I.H., Extramural)
Chemical References
  • Ifi1 protein, mouse
  • Receptors, Interferon
  • STAT1 Transcription Factor
  • Stat1 protein, mouse
  • Interferons
  • GTP-Binding Proteins
Topics
  • Animals
  • Autophagy (drug effects, genetics)
  • Bone Marrow Transplantation
  • Cell Cycle (drug effects, genetics)
  • Cell Proliferation (drug effects)
  • Flow Cytometry
  • GTP-Binding Proteins (deficiency, genetics)
  • Gene Expression (drug effects)
  • Gene Expression Profiling
  • HEK293 Cells
  • Hematopoietic Stem Cells (metabolism)
  • Humans
  • Immunohistochemistry
  • Interferons (genetics, metabolism, pharmacology)
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Oligonucleotide Array Sequence Analysis
  • Receptors, Interferon (deficiency, genetics)
  • Reverse Transcriptase Polymerase Chain Reaction
  • STAT1 Transcription Factor (deficiency, genetics)
  • Signal Transduction (genetics)
  • Interferon gamma Receptor

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: