HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

[Effects of K-ras gene mutation on colon cancer cell line Caco-2 metastasis by regulating E-cadherin/beta-catenin/p120 protein complex formation and RhoA protein activity].

AbstractOBJECTIVE:
To explore the effects of K-ras gene mutation on colon cancer cell line Caco-2 metastasis by regulating E-cadherin/beta-catenin/p120 protein complex formation and RhoA protein activity.
METHODS:
K-ras wild-type colon cancer cell line Caco-2 was transiently transfected by phr-GFP vector (control group), transfected by mutant K-ras gene phr-K-ras (Val12) vector (transfection group), transfected by mutant K-ras gene phr-K-ras (Val12) vector and treated by specific MAPK pathway inhibitor PD98059 (MAPK inhibition group), or transfected by mutant K-ras gene phr-K-ras (Val12) vector and treated by specific PI-3K pathway inhibitor LY294002 (PI-3K inhibition group), respectively. Cell migration was tested by Transwell experiment. E-cadherin and beta-catenin protein expression and intracellular location were detected by cell immunofluorescence method. Intracellular p120 protein expression was detected by Western blot. beta-catenin protein level which combined with E-cadherin was detected by immunoprecipitation. RhoA activity was analyzed by Pull-down assay.
RESULTS:
The Caco-2 cell migration rate was (19.8 +/- 5.6) % in transfection group, which was significantly higher than that in control group [(14.0 +/- 4.2) %] (P = 0.001) and in MAPK inhibition group [(15.8 +/- 1.2) %] (P = 0.044), but was not significantly different from that in PI-3K inhibition group [(17.5 +/- 2.8) %] (P = 0.095). Immunofluorescence method showed that the E-cadherin and beta-catenin stain located in the cell membrane decreased in transfection group. Western blot showed that the total intracellular p120 protein decreased in transfection group and PI-3K inhibition group. Immunoprecipitation data showed that beta-catenin protein level combined with E-cadherin decreased in transfection group and PI-3K group. Pull-down test showed that RhoA protein activity was up-regulated in transfection group.
CONCLUSION:
K-ras gene mutation stimulates the migration of colon cancer cell Caco-2, which may be achieved by decreasing the E-cadherin/beta-catenin/p120 protein complex formation via MAPK pathway and increasing the RhoA protein activity.
AuthorsJing-nan Li, Xiao Li, Jia-ming Qian, Xin-qing Lu, Hong Yang
JournalZhongguo yi xue ke xue yuan xue bao. Acta Academiae Medicinae Sinicae (Zhongguo Yi Xue Ke Xue Yuan Xue Bao) Vol. 32 Issue 1 Pg. 46-50 (Feb 2010) ISSN: 1000-503X [Print] China
PMID20236587 (Publication Type: English Abstract, Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Cadherins
  • Catenins
  • Multiprotein Complexes
  • beta Catenin
  • rhoA GTP-Binding Protein
  • Delta Catenin
Topics
  • Caco-2 Cells
  • Cadherins (metabolism)
  • Catenins (metabolism)
  • Cell Movement
  • Colonic Neoplasms (metabolism, pathology)
  • Genes, ras (genetics)
  • Humans
  • Multiprotein Complexes (metabolism)
  • Mutation
  • Neoplasm Metastasis
  • Transfection
  • beta Catenin (metabolism)
  • rhoA GTP-Binding Protein (metabolism)
  • Delta Catenin

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: