HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A mechanism-based combination therapy reduces local tumor growth and metastasis in an orthotopic model of prostate cancer.

Abstract
Therapy-induced stimulation of angiogenic molecules can promote tumor angiogenesis leading to enhanced tumor growth and cancer metastasis. Several standard and emerging therapies, such as radiation and photodynamic therapy (PDT), can induce angiogenic molecules, thus limiting their effectiveness. PDT is approved for the treatment of several cancers; however, its induction of vascular endothelial growth factor (VEGF) creates conditions favorable to enhanced tumor growth and metastasis, therefore mitigating its cytotoxic and antivascular effects. This is the first report showing that subcurative PDT in an orthotopic model of prostate cancer (LNCaP) increases not only VEGF secretion (2.1-fold) but also the fraction of animals with lymph node metastases. PDT followed by administration of an antiangiogenic agent, TNP-470, abolished this increase and reduced local tumor growth. On the other hand, administration of TNP-470 before PDT was less effective at local tumor control. In addition, animals in all groups, except in the PDT + TNP-470 group, had a weight loss of >3 g at the time of sacrifice; the weight of the animals in the PDT + TNP-470 group did not change. The significant reduction (P < 0.05) in tumor weight and volume observed between the PDT + TNP-470 group and the control group suggests that the combination of PDT and antiangiogenic treatment administered in the appropriate sequence was not only more effective at controlling local tumor growth and metastases but also reduced disease-related toxicities. Such molecular response-based combinations merit further investigations as they enhance both monotherapies and lead to improved treatment outcomes.
AuthorsBoleslav Kosharskyy, Nicolas Solban, Sung K Chang, Imran Rizvi, Yuchiao Chang, Tayyaba Hasan
JournalCancer research (Cancer Res) Vol. 66 Issue 22 Pg. 10953-8 (Nov 15 2006) ISSN: 0008-5472 [Print] United States
PMID17108133 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S.)
Chemical References
  • Angiogenesis Inhibitors
  • Cyclohexanes
  • Sesquiterpenes
  • Vascular Endothelial Growth Factor A
  • O-(Chloroacetylcarbamoyl)fumagillol
Topics
  • Angiogenesis Inhibitors (pharmacology)
  • Animals
  • Cell Growth Processes (drug effects)
  • Cell Line, Tumor
  • Combined Modality Therapy
  • Cyclohexanes (pharmacology)
  • Humans
  • Lymphatic Metastasis
  • Male
  • Mice
  • Mice, SCID
  • Neoplasm Metastasis
  • Neovascularization, Pathologic (drug therapy, metabolism)
  • O-(Chloroacetylcarbamoyl)fumagillol
  • Photochemotherapy (methods)
  • Prostatic Neoplasms (blood supply, drug therapy, metabolism, pathology)
  • Sesquiterpenes (pharmacology)
  • Vascular Endothelial Growth Factor A (biosynthesis)
  • Xenograft Model Antitumor Assays

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: