HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation.

Abstract
The objective of this study was to determine whether or not the underlying physiological systems that generates spontaneous arterial blood pressure (ABP), cerebral blood flow velocity (CBFV), and intracranial pressure signals could be adequately approximated as a linear stochastic process. Furthermore, a new measure (C) capable of capturing the degree of nonlinear dependency between two ABP and CBFV signals (including a time-varying situation) was proposed for quantifying the degree of cerebral blood flow autoregulation. A surrogate data test of fifteen ABP, CBFV, and intracranial pressure (ICP) segments was conducted for detecting whether there exists a statistically significant deviation from the null hypothesis of linear signals. The extension of the established block computation method of C measure to an adaptive one was achieved. This new algorithm was then applied to study the C evolution using brain injury patients data from a hyperventilation study and two propofol studies. Nonlinearity has not been detected for all the fifteen recordings, neither has nonlinear dependency between CBFV and ABP. However, their presences in some of the signal segments justified the adoption of a nonlinear measure of dependency capable of characterizing both linear and nonlinear correlations for inferring autoregulation status. C measure started to decrease with the introduction of hypocapnia state indicating that hyperventilation may reduce the dependency of CBFV on ABP fluctuations. On the other hand, complex patterns of C measure evolution were observed among 14 cases of propofol data indicating a nontrivial effect of propofol on the dependency of CBFV on ABP.
AuthorsXiao Hu, Valeriy Nenov, Thomas C Glenn, Luzius A Steiner, Marek Czosnyka, Marvin Bergsneider, Neil Martin
JournalIEEE transactions on bio-medical engineering (IEEE Trans Biomed Eng) Vol. 53 Issue 2 Pg. 195-209 (Feb 2006) ISSN: 0018-9294 [Print] United States
PMID16485748 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Topics
  • Adaptation, Physiological (physiology)
  • Algorithms
  • Blood Flow Velocity (physiology)
  • Blood Pressure (physiology)
  • Brain (blood supply, physiology)
  • Cerebrovascular Circulation (physiology)
  • Computer Simulation
  • Feedback (physiology)
  • Homeostasis (physiology)
  • Humans
  • Intracranial Pressure (physiology)
  • Models, Cardiovascular
  • Models, Neurological
  • Models, Statistical
  • Nonlinear Dynamics
  • Stochastic Processes

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: