HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mechanism of hydrogen peroxide-induced apoptosis of the human osteosarcoma cell line HS-Os-1.

Abstract
In our previous study, we examined radiation-induced ROS formation, oxidative DNA damage, early apoptotic changes, and mitochondrial membrane dysfunction in the human osteosarcoma cell line HS-Os-1, which was established from an osteoblastic tumor that arose in the left humerus of an 11-year-old girl and was already morphologically characterized in vitro and in vivo. We found that ROS formation and oxidative DNA damage were scarcely seen after irradiation of up to 30 Gy in these cells; that mitochondrial membrane potential was preserved; and that apoptotic changes were not demonstrated despite the relatively high-dose irradiation of 30 Gy. Based on these results, the radioresistance of the human osteosarcoma cell line HS-Os-1, was considered to arise, at least in part, from the low level of ROS formation following irradiation, which in turn may have resulted from the strong scavenging ability of the cells for free radicals, including hydroxyl radicals. Therefore, in this study, we examined the effect of exogenous hydrogen peroxide, which causes a potent oxidative stress and has been demonstrated to be a potent apoptosis-inducer in many kinds of cells. We found that addition of 1 or 10 mM hydrogen peroxide induced ROS formation, oxidative DNA damage, dysfunction of the mitochondrial membrane potential, and early apoptotic changes in the human osteosarcoma cell line HS-Os-1. We therefore concluded that intracellular ROS formation is involved in the hydrogen peroxide-induced apoptosis of HS-Os-1 cells.
AuthorsYasuhiro Ogawa, Toshiaki Takahashi, Toshihiro Kobayashi, Shinji Kariya, Akihito Nishioka, Hiroo Mizobuchi, Masataka Noguchi, Shinji Hamasato, Toshikazu Tani, Harumichi Seguchi, Shoji Yoshida, Hiroshi Sonobe
JournalInternational journal of molecular medicine (Int J Mol Med) Vol. 12 Issue 4 Pg. 459-63 (Oct 2003) ISSN: 1107-3756 [Print] Greece
PMID12964019 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Annexin A5
  • Free Radicals
  • Reactive Oxygen Species
  • Hydrogen Peroxide
Topics
  • Annexin A5 (pharmacology)
  • Apoptosis
  • Cell Line, Tumor
  • Child
  • DNA Damage
  • Dose-Response Relationship, Radiation
  • Female
  • Free Radicals
  • Humans
  • Hydrogen Peroxide (pharmacology)
  • Microscopy, Fluorescence
  • Osteosarcoma (pathology)
  • Oxidative Stress
  • Reactive Oxygen Species

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: