HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Optimization of P1-P3 groups in symmetric and asymmetric HIV-1 protease inhibitors.

Abstract
HIV-1 protease is an important target for treatment of AIDS, and efficient drugs have been developed. However, the resistance and negative side effects of the current drugs has necessitated the development of new compounds with different binding patterns. In this study, nine C-terminally duplicated HIV-1 protease inhibitors were cocrystallised with the enzyme, the crystal structures analysed at 1.8-2.3 A resolution, and the inhibitory activity of the compounds characterized in order to evaluate the effects of the individual modifications. These compounds comprise two central hydroxy groups that mimic the geminal hydroxy groups of a cleavage-reaction intermediate. One of the hydroxy groups is located between the delta-oxygen atoms of the two catalytic aspartic acid residues, and the other in the gauche position relative to the first. The asymmetric binding of the two central inhibitory hydroxyls induced a small deviation from exact C2 symmetry in the whole enzyme-inhibitor complex. The study shows that the protease molecule could accommodate its structure to different sizes of the P2/P2' groups. The structural alterations were, however, relatively conservative and limited. The binding capacity of the S3/S3' sites was exploited by elongation of the compounds with groups in the P3/P3' positions or by extension of the P1/P1' groups. Furthermore, water molecules were shown to be important binding links between the protease and the inhibitors. This study produced a number of inhibitors with Ki values in the 100 picomolar range.
AuthorsHans O Andersson, Kerstin Fridborg, Seved Löwgren, Mathias Alterman, Anna Mühlman, Magnus Björsne, Neeraj Garg, Ingmar Kvarnström, Wesley Schaal, Björn Classon, Anders Karlén, U Helena Danielsson, Göran Ahlsén, Ullrika Nillroth, Lotta Vrang, Bo Oberg, Bertil Samuelsson, Anders Hallberg, Torsten Unge
JournalEuropean journal of biochemistry (Eur J Biochem) Vol. 270 Issue 8 Pg. 1746-58 (Apr 2003) ISSN: 0014-2956 [Print] England
PMID12694187 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • DNA Primers
  • HIV Protease Inhibitors
  • HIV Protease
Topics
  • Amino Acid Sequence
  • Binding Sites
  • Crystallography, X-Ray
  • DNA Primers
  • HIV Protease (chemistry, genetics, metabolism)
  • HIV Protease Inhibitors (chemistry, pharmacology)
  • HIV-1 (enzymology)
  • Kinetics
  • Models, Molecular
  • Protein Conformation
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: