HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Repeated phencyclidine administration alters glutamate release and decreases GABA markers in the prefrontal cortex of rats.

Abstract
Repeated phencyclidine (PCP) administration induces cognitive disruptions resembling those seen in schizophrenia. Alterations in glutamate transmission and γ-aminobutyric acid (GABA) function in the prefrontal cortex (PFC) have been implicated in these PCP-induced deficits, as well as in cognitive symptoms of schizophrenia. PCP-induced cognitive deficits are reversed by chronic treatment with the atypical antipsychotic clozapine in rats. We investigated the effects of a single injection vs. repeated administration of PCP on glutamate levels in the PFC using in vivo microdialysis. Furthermore, we examined how these PCP regimens affect GABA neuronal markers in the PFC. Finally, we investigated the effects of clozapine on disruptions in glutamate levels and GABA neuronal markers induced by repeated PCP administration. Acute PCP administration (2 mg/kg) increased extracellular PFC glutamate; this increase appeared blunted, but was not eliminated, after repeated PCP pretreatment. PCP administration also strongly decreased levels of parvalbumin and glutamic acid decarboxylase-67 (two markers of GABA function) in the PFC, an effect that was maintained after a 10 day drug-free washout period and unaltered by the resumption of repeated PCP injections. All of the observed PCP effects were attenuated by chronic treatment with clozapine, an atypical antipsychotic that has partial effectiveness on cognitive impairment in schizophrenia. These findings suggest that abnormal cortical glutamate transmission, possibly driven by pathological changes in GABA function in parvalbumin-positive fast-spiking interneurons, may underlie some of the cognitive deficits in schizophrenia. A better understanding of glutamate and GABA dysregulation in schizophrenia may uncover new treatment targets for schizophrenia-related cognitive dysfunction.
AuthorsNurith Amitai, Ronald Kuczenski, M Margarita Behrens, Athina Markou
JournalNeuropharmacology (Neuropharmacology) Vol. 62 Issue 3 Pg. 1422-31 (Mar 2012) ISSN: 1873-7064 [Electronic] England
PMID21238466 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2011 Elsevier Ltd. All rights reserved.
Chemical References
  • Glutamic Acid
  • gamma-Aminobutyric Acid
  • Phencyclidine
Topics
  • Animals
  • Glutamic Acid (metabolism)
  • Male
  • Phencyclidine (administration & dosage, toxicity)
  • Prefrontal Cortex (drug effects, metabolism)
  • Rats
  • Rats, Wistar
  • gamma-Aminobutyric Acid (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: