HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Role of the antioxidant ascorbate in hibernation and warming from hibernation.

Abstract
Ground squirrels tolerate up to 90% reductions in cerebral blood flow during hibernation as well as rapid reperfusion upon periodic arousal from torpor without apparent neurological damage. Thus, hibernation is studied as a model of tolerance to cerebral ischemia and other types of brain injury. Metabolic suppression likely plays a primary adaptive role that allows hibernating species to tolerate dramatic fluctuations in blood flow. Several other aspects of hibernation physiology are also consistent with tolerance to ischemia and reperfusion suggesting that multiple neuroprotective adaptations may work in concert during hibernation. The purpose of the present work is to review evidence for enhanced antioxidant defense systems during hibernation, with a focus on ascorbate, and discuss potential roles of these antioxidants during hibernation. In concert with dramatic decreases in blood flow, nutrient and oxygen delivery, plasma concentrations of the antioxidant ascorbate [(Asc)p] increase 3-5-fold during hibernation. In contrast, during re-warming, [Asc]p declines at a relatively rapid rate that peaks at the time of maximal O(2) consumption. This peak in O(2) consumption also coincides with a brief rise in plasma urate concentration consistent with a surge in reactive oxygen species production. Overall, data suggest that elevated concentration of plasma ascorbate is poised for distribution to metabolically active tissues during the surge in oxidative metabolism that accompanies re-warming during hibernation. This pool of ascorbate, as well as increased expression of other antioxidant defense systems, may protect vulnerable tissues from oxidative stress during hibernation and re-warming from hibernation. Better understanding of the role of ascorbate in hibernation may guide use of ascorbate and other antioxidants in treatment of stroke, head trauma and neurodegenerative disease.
AuthorsK L Drew, Ø Tøien, P M Rivera, M A Smith, George Perry, M E Rice
JournalComparative biochemistry and physiology. Toxicology & pharmacology : CBP (Comp Biochem Physiol C Toxicol Pharmacol) Vol. 133 Issue 4 Pg. 483-92 (Dec 2002) ISSN: 1532-0456 [Print] United States
PMID12458177 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, P.H.S., Review)
Chemical References
  • Antioxidants
  • Ascorbic Acid
Topics
  • Animals
  • Antioxidants (metabolism)
  • Ascorbic Acid (physiology)
  • Body Temperature (physiology)
  • Hibernation (physiology)
  • Humans

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: