HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Manipulating the Subcellular Localization and Anticancer Effects of Benzophenothiaziniums by Minor Alterations of N-Alkylation.

Abstract
Cationic, water-soluble benzophenothiaziniums have been recognized as effective type I photosensitizers (PSs) against hypoxic tumor cells. However, the study of the structure-property relationship of this type of PS is still worth further exploration to achieve optimized photodynamic effects and minimize the potential side effects. Herein, we synthesized a series of benzophenothiazine derivatives with minor N-alkyl alteration to study the effects on the structure-property relationships. The cellular uptake, subcellular organelle localization, reactive oxygen species (ROS) generation, and photocytotoxicity performances were systematically investigated. NH2NBS and EtNBS specifically localized in lysosomes and exhibited high toxicity under light with a moderate phototoxicity index (PI) due to the undesirable dark toxicity. However, NMe2NBS with two methyl substitutions accumulated more in mitochondria and displayed an excellent PI value with moderate light toxicity and negligible dark toxicity. Without light irradiation, NH2NBS and EtNBS could induce lysosomal membrane permeabilization (LMP), while NMe2NBS showed no obvious damage to lysosomes. After irradiation, NH2NBS and EtNBS were released from lysosomes and relocated into mitochondria. All compounds could induce mitochondria membrane potential (MMP) loss and nicotinamide adenine dinucleotide phosphate (NADPH) consumption under light to cause cell death. NMe2NBS exhibited remarkable in vivo photodynamic therapy (PDT) efficacy in a xenograft mouse tumor (inhibition rate, 89%) with no obvious side effects. This work provides a valuable methodology to investigate the structure-property relationships of benzophenothiazine dyes, which is of great importance in the practical application of PDT against hypoxia tumor cells.
AuthorsYanping Wu, Yuncong Chen, Shankun Yao, Shumeng Li, Hao Yuan, Fen Qi, Weijiang He, Zijian Guo
JournalMolecules (Basel, Switzerland) (Molecules) Vol. 28 Issue 4 (Feb 10 2023) ISSN: 1420-3049 [Electronic] Switzerland
PMID36838702 (Publication Type: Journal Article)
Chemical References
  • benzophenothiazine
  • 5-ethylamino-9-diethylaminobenzo(a)phenothiazinium
  • Photosensitizing Agents
  • Phenothiazines
Topics
  • Humans
  • Animals
  • Mice
  • Photosensitizing Agents (pharmacology)
  • Phenothiazines
  • Alkylation
  • Photochemotherapy (methods)
  • Cell Line, Tumor

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: